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1.0 Introduction 
Travel forecasts inherently embody some level of uncertainty as a result of uncertainties around 
many of the key inputs, simplifications, and statistical methods that are used to derive those 
forecasts. This uncertainty translates into risks that decisions based on the forecasts will be 
misguided – either failing to meet objectives or simply not performing as well as some other 
alternatives that could have been selected. From an agency perspective, these risks can lead to 
lawsuits, loss of credibility, unwarranted expenditures, or suboptimal allocation of funding. Formal 
uncertainty analysis must be performed sequentially by identifying sources of uncertainty, 
quantifying their likelihoods of occurrence and estimating the impact of those occurrences. In the 
case of travel forecasting, quantifying uncertainty in travel forecasts and its effects on key 
performance measures is a non-trivial task given the number and complexity of the factors which 
can impact travel.  
This installment of TMIP’s How-To series builds on the TMIP white paper on Managing 
Uncertainty and Risk in Travel Forecasting by providing details on how uncertainty in travel 
forecasts and related performance measures can be quantified. Formal methods for quantifying 
risk or uncertainty profiles in key performance measures have been developed and are 
increasingly common in the context of investment grade traffic and toll revenue studies. This How-
to guide illustrates how these methods can be applied to other performance measures such as 
system VMT, delay, and greenhouse gases or other emissions as representative of performance 
measures commonly used for metropolitan transportation planning.  

1.1 Reasons for Quantifying Uncertainty 
While central value or point forecasts of travel demand may be suitable for some applications, 
such as when filtering a long list of alternative project designs, there are many instances where 
modelers, policy makers, or outside stakeholders would greatly benefit from a careful examination 
of forecast uncertainty. Quantifying uncertainty could enhance model forecasts in many ways, 
including by: 

• Providing comprehensive results 
• Evaluating the risk to key stakeholders 
• Describing how changes to key assumption could affect the outcome 
• Accounting for highly uncertain assumptions 

Historical evidence shows that actual travel demand can deviate considerably from point 
forecasts, often due to overly optimistic model assumptions. In a seminal study from the 1990s, 
Pickrell (1992) observed significant deviation between transit forecasts and actual ridership, with 
the forecasts generally exceeding actual ridership. Over a decade later, Flyvbjerg et al. (2003) 
documented analogous forecast deviations for a wide set of transit and toll road projects. Bain 
(2009) reviewed additional toll road studies and observed approximately normal forecast errors 
along with a systematic optimism bias. 



How-to: Quantify Uncertainty in Travel Forecasts 
 

April 2018 2  

 
Source: Bain, R. (2009) Error and optimism bias in toll road traffic forecasts. Transportation, Vol. 36, No. 5, pp. 469-482. 

Figure 1. Historic accuracy of toll road forecasts. 

Even if optimism biases are not uncommon in forecasting, producing a range of outcomes may 
compel modelers and policy makers to carefully review the key model assumptions and consider 
a wider and more realistic set of possibilities.  
Beyond generally enhancing forecasts, there are specific situations where quantifying uncertainty 
is crucial. One such case is for projecting toll road or fare box revenue. Public agencies need to 
balance expected costs against expected revenue and government subsidies. Private parties may 
be reluctant to take either a debt or equity stake in a transportation infrastructure investment 
without having a clear understanding of the risks. Private debt holders may be especially sensitive 
to downside risk and care greatly about revenue forecasts for the worst 25% of cases. Private 
equity holders would also care about the potential for a high return on investment. 
Understanding forecast uncertainty may also be crucial for policy makers who need to set 
appropriate targets for performance measures. If government funding depends on meeting those 
targets, then policy makers may want to define conservative but not overly pessimistic goals. 
When less is at stake, policy makers can set ambitious but attainable targets.  
There are also situations where a key model assumption is so uncertain that it would not be 
credible to forecast, or at least acknowledge, anything but a range of outcomes. A topical example 
is modeling the use of autonomous vehicles. Among myriad uncertainties, future market 
penetration rates for “shared” and “private” autonomous are not well established. The analyst may 
have to bound the forecasts by testing extreme cases of the uncertain assumption. 

1.1.1 Qualitative Treatment of Uncertainty 
While there are clear benefits to quantifying uncertainty, there are also qualitative approaches to 
avoid conveying false precision or a false sense of confidence in point forecasts. One common 
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approach is to round the forecasts to one or two significant figures. Another approach is for the 
analyst, based on professional judgment, to indicate whether the forecasting error is expected to 
be relatively “small” or “large” or otherwise verbally communicate an approximate level of 
confidence. 

1.2 Methods for Quantifying Uncertainty 
Forecast uncertainty can be quantified in historical terms, without explicitly considering the details 
of each new forecast, or it can be quantified analytically based on the unique set of inputs and 
methods used in the forecast. Both approaches have advantages and disadvantages, and the 
preferred approach may depend on whether the new study is unusual or routine and how far the 
forecast extends into the future.  

1.2.1 Historical / Retrospective  
Some agencies, including the Ohio Department of Transportation (ODOT), have made a recent 
effort to record forecast deviations. So far, ODOT has focused on comparing opening year 
forecasts, but they are progressively building clear, quantitative evidence of forecast uncertainty 
for routine studies. 

 
Source: Improving Project Level Traffic Forecasts by Attacking the Problem from all Sides, presented by Greg Giaimo and Mark Byram 
at the 2013 TRB Transportation Planning Applications Conference. 

Figure 2. Historic accuracy of ADT forecasts in Ohio. 

Retrospective analysis has also become more common in toll road forecasting, with analyses by 
bond rating houses such as Standard and Poor’s and consultants such as Robert Bain (see Figure 
1). These analyses provide a valuable complement to analytic methods of estimating uncertainty 
and have the benefit of being grounded in relevant data. However, they have only limited use in 
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understanding the uncertainty of forecasts for particular projects or for particular regions with 
characteristics that may deviate from the norm or the relevant observable past. For example, 
retrospective analyses may underestimate uncertainty related to new factors such as autonomous 
vehicles or in regions experiencing dynamic growth (unless the historic observations come from 
the same or a similar region).  

1.2.2 Analytic 
Analytic methods can be used to evaluate how model inputs contribute to forecast uncertainty. If 
a probability function can be assumed for each input, then advanced analytic methods can be 
used to formally estimate the distribution of outcomes. 
Univariate 

Univariate “sensitivity” analyses can provide a partial quantitative description of how the forecast 
depends on individual inputs. If the forecast is very sensitive to a relatively uncertain input, then 
the overall uncertainty is likely to be high. 

Table 1. Contribution to forecast uncertainty versus input uncertainty and model sensitivity. 

 Low Model Sensitivity 
to Input 

High Model Sensitivity 
to Input 

Low Variance 
Input LOW Contribution LOW Contribution 

High Variance 
Input LOW Contribution HIGH Contribution  

Univariate “sensitivity tests” are not uncommon. In univariate testing, the analyst measures how 
much the results change in response to either a moderate or substantial change to one of the 
inputs. This response allows the analyst to estimate a forecast elasticity for each input. The 
analyst can review elasticities of key inputs to evaluate which variables most affect the results 
and by roughly how much. 
Univariate analyses cannot capture complex interactions among several inputs and are far less 
useful for evaluating how the results vary with simultaneous changes to multiple inputs which may 
be likely in many forecasting situations. 
Decomposition 

Relative to base conditions, forecast scenarios commonly include major changes to both 
transportation supply and demand. These changes are generally modeled together in a single 
scenario, but they can also be modeled incrementally, starting with near certain changes and 
advancing to (somewhat) less certain changes. This decomposition technique approximates the 
effect of individual changes to supply and demand, and it also provides several forecasts, ranging 
from very pessimistic to optimistic outcomes. 
Starting from base conditions, the minimum “build” network is typically added first since this 
service is virtually guaranteed to exist once the project is approved. More conservative land use 
changes can then be added, followed by more optimistic growth or higher levels of service. This 
approach of building up a series of forecasts starting with a hypothetical scenario as if the 
facility/service were open today and layering on growth, etc., has become a common approach in 
transit forecasting, and seen some use in other contexts as well.  
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Scenario Testing 

“Scenario testing” typically focuses on modeling distinct optimistic, middling, and pessimistic 
visions of the future. At its best, this method is a relatively quick and direct way to produce a 
meaningful range of forecasts.  
The distinct scenarios generally include changes to several inputs and may loosely indicate 
multivariate effects, however, the scenarios are often too few or inefficiently designed for rigorous 
analysis of input-output relationships. Further, the likelihood of each scenarios is often unknown, 
limiting their ability to quantify risks to key stakeholders. 
Response Surface Simulation  

Response surface simulation can be used to carefully evaluate how forecasts depend on their 
inputs, describing how the results depend both on individual inputs and on complex interactions 
among inputs. Further, if the set of possible input values and their likelihoods can be stated in 
probability functions, then this technique can produce a complete probability distribution of 
outcomes. This distribution of outcomes can help answer challenging policy questions, such as 
the likelihood of meeting performance or revenue targets. 
Response surface simulation has only recently been introduced to travel forecasting by Adler et 
al. (2014), and has since been used for several major studies. Tillman and Adler (2015) applied 
the technique to quantify uncertainty in a traffic and revenue study of express lanes on I-4 near 
Orlando. Cambridge Systematics (2016) applied a version of the technique in a revenue risk 
analysis of the proposed California High-Speed Rail. 
The technique generally includes three major steps: 

• Identifying the key uncertainties or risks 
• Specifying a probability distribution for the uncertain or risky inputs 
• Estimating the probability distributions of model outputs 

The set of key risks typically varies from study to study and might include topics such as 
demographic trends, fuel prices, or the use of autonomous vehicles. Some risks can be modeled 
directly by varying an obvious input or assumption. Other risks must be modeled indirectly by 
varying a proxy input or assumption. 
Specifying probability distributions for the uncertain inputs may be the most challenging step. For 
some inputs, such as population growth, it may be possible to directly estimate the full probability 
distribution or, at least, the mean and variance of the distribution. For other inputs, such as market 
penetration rates for autonomous vehicle, the true probability distribution may be unobservable 
and the analyst may have to assume a distribution on the basis of very little information. A simple 
uniform or triangular distribution might be used when the true distribution is unknown. For 
simplicity, inputs are often assumed to be independently distributed, but the analyst may want to 
estimate joint distributions in important cases. There is some evidence, for example, that fuel 
prices and employment are negatively correlated (with a lag effect). Accounting for these types of 
interaction effects can be challenging but can further improve the robustness of an analysis.  
Completing the final step may require many model runs and significant calendar time, but it is 
generally straightforward. The analyst should select an experimental design, such as fractional 
factorial design, that efficiently tests different combinations of inputs. After running each scenario, 
the analyst can estimate a regression model where model output is the dependent variable and 
model inputs, including interactions between inputs, are the explanatory variables. A Monte Carlo 
simulation can then be used to produce the distribution of outcomes by “drawing” many thousands 
(or more) combinations of inputs and feeding the inputs into the regression model. 
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2.0 Case Studies 
Techniques for quantifying uncertainty are illustrated through two case studies. The case studies 
demonstrate methods for defining uncertain inputs and estimating relationships between those 
uncertain inputs and forecast variables.  
This chapter begins with a brief overview of the two case studies, reviewing their travel supply 
and demand characteristics and the available forecasting tools. The key forecasting variables, or 
performance measures, are then discussed, followed by detailed qualitative and quantitative 
definitions of the uncertain inputs. 

2.1 Locations 
The study focuses on two mid-sized areas: Toledo, Ohio, and Chattanooga, Tennessee. The 
study areas have seen moderate changes in travel supply and demand in recent years, and 
neither area is expecting rapid growth or transformative infrastructure investment. The locations 
were chosen in part in the hopes that they were large and dynamic enough to have important 
uncertainties without being so large as to make the example analysis unduly complex or difficult.  
Beyond basic differences in travel supply and demand, another distinction is that Toledo uses a 
traditional trip-based model and Chattanooga uses an activity-based model and each uses a 
different network modeling software, making the examples broadly applicable regardless of model 
design or software. 

2.1.1 Toledo 
The Toledo model includes Toledo, Ohio, and some neighboring communities within 10-30 miles 
(see Figure 3). The base model is calibrated to 2010 conditions, when there were 620,746 people 
and 344,197 jobs in the region. The model includes 239,319 households, 276,777 workers, and 
145,885 children.  
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Source: © 2017 Google Maps® 

Figure 3. Toledo model region. 

Toledo uses a traditional trip-based model, implemented in Cube (see Source: Ohio Medium/Small MPO 
Model System. 

Figure 4). The user runs a convergence check after each iteration and then manually initiates a 
feedback loop if one is required. Only two iterations are generally needed for convergence. The 
run times vary based on computer specifications but are generally very fast, with two iterations 
only requiring 12 to 15 minutes on a machine with four cores. 
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Source: Ohio Medium/Small MPO Model System. 

Figure 4. Toledo model flow. 

2.1.2 Chattanooga 
The Chattanooga model covers Hamilton County in the state of Tennessee and Catoosa County 
and portions of Walker and Dade counties in northern Georgia (see Source: © 2017 Google 
Maps® 
Figure 5). The base model is calibrated to 2014 conditions, when there were 445,876 people and 
249,320 jobs in the region. The model includes 178,047 households, 183,079 workers, and 
126,474 children. 
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Source: © 2017 Google Maps® 

Figure 5. Chattanooga model region. 

Chattanooga uses an activity-based model, implemented in TransCAD 7, a GIS-based travel 
demand modeling software, and DaySim, an open-source software for activity-based modeling.  
DaySim performs daily activity generation and scheduling, tour and trip level destination and 
mode choices for various travel purposes; however, the overall model flow is broadly similar to a 
traditional model (see Source: Chattanooga-Hamilton County Regional Planning Agency. 

Figure 6). Truck and external demand are not microsimulated, but estimated by trip-based model 
components. 
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Source: Chattanooga-Hamilton County Regional Planning Agency. 

Figure 6. Chattanooga model flow. 

The Chattanooga model has an automatic feedback feature. The model checks for convergence 
based on changes in the highway skims, and it will generally converge in two iterations but quits 
if the maximum of four iteration is reached. The run time varies based on computer specifications, 
with a 32-core computer completing two iterations in about 2 hours and 30 minutes.  

2.2 Performance Measures of Interest 

Most model outputs depend on each uncertain input to at least a very minor degree, but it would 
be impractical to precisely quantifying how every output depends on every uncertain input. Thus, 
the analyst generally must focus on a set of key model outputs, or performance measures of 
interest. 
The two case studies in this report focus on five performance measures: 

• Vehicle Miles Traveled (VMT) 
• Delay (hours) 
• Transit ridership 
• Walk and bike share (chapter 3 only) 
• Auto emissions (chapter 4 only) 

Although the case studies include several key performance measures for automobiles and trucks, 
the dominant modes of transportation, the case studies also include performance measures for 
transit and active travel modes which may have less certain future demand. 
These case studies therefore differ from previous applications of the response surface simulation 
method in which it has generally been applied to understand the uncertainty in a single critical 
model output, such as toll road revenues or high-speed rail ridership. These pilot studies 
intentionally looked more broadly at a wider set of performance measures since agencies 
interested in applying the technique for general planning purposes would presumably also be 
interested in a number of performance measures. 
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2.3 Sources of Uncertainty 
Identifying the key sources of uncertainty is a crucial step in both simple and more advanced 
approaches for quantifying uncertainty. Virtually all forecast year model inputs are uncertain to 
some degree, and the judgment of both local and technical experts is typically needed to identify 
which sources are important. 
For advanced approaches, such as response surface simulation demonstrated in chapter 4, the 
project team must define a probability distribution for each input that states the likelihood the input 
will assume each possible value in its domain. For some inputs, the probability distribution, 
including the shape or mean and variance, can be estimated from historical data. For other inputs, 
including inputs that depend on emerging technologies or presumed laws and regulations, the 
distribution may have to be asserted based on professional judgment.  
The case studies include six key sources of uncertainty: 

• Land Use (chapter 4 only) 
• Telecommuting 
• Parking Costs 
• Transit Fare 
• Fuel Costs 
• Generational Modal Preferences (chapter 4 only)  

No list of travel forecast uncertainties can be truly exhaustive and include every source of 
uncertainty, however, some major uncertainties might also have to be excluded based on the 
scope and budget of the study. For example, this list includes several key determinates of future 
automobile use, but it does not include autonomous vehicles use since modeling this demand 
could greatly complicate the demonstration exercise. For the same reason, the study also does 
not include changes in freight and truck growth rate due to factors like globalization, modernization 
of production technologies, and trade agreements. Both of these may, however, be valuable 
factors in uncertainty to consider, and although they are not treated directly in the examples here, 
the methods illustrated here can be directly extended to deal with these issues as well.  
Most of the uncertain inputs are assumed to be independently distributed. For example, the future 
transit fare is assumed not to be correlated with future automobile parking costs. The 
independence assumption obviates estimating joint probability distributions; however, inputs are 
often at least weakly correlated. For example, denser land uses may be correlated with higher 
parking costs. The response surface simulation method demonstrated later in this guide can 
account for these correlations, but only if they can be properly specified.  

2.3.1 Land Use  
The spatial distribution of households and employment is among the most important assumptions 
in travel forecasting. For rapidly transforming areas, these future land use assumptions may be 
the largest source of uncertainty. 
The 2045 Toledo and Chattanooga land use assumptions were based on expert judgment from 
local agencies and observed population and employment growth from 2000 to 2010, according to 
the US Census. The Chattanooga land use scenarios were also informed in part through the use 
of a land use visioning tool.  
The land use scenarios focused on changes to three mutually exclusive areas:  

• “Urban Core” 
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• “Boom City,” which is a peripheral site that experienced relatively large growth from 2000 
to 2010, and while unlikely, could conceivably develop densely on a large scale 

• “Halo Area,” which includes all land outside of the “Urban Core” and the “Boom City,” 
primarily suburban and rural areas  

Distinct 2045 land use scenarios were developed for Toledo and Chattanooga. Each scenario 
generally had different assumptions for population and employment growth in the “Urban Core,” 
“Halo Area,” and “Boom City.” The distinct scenarios served two purposes. First, the scenarios 
were used to develop land use inputs to measure each model’s response to changes in the spatial 
distribution of population and employment. Section 4.1 defines which specific combinations of 
land use scenarios were used to estimate the reduced form equation for response surface 
simulation. Second, the distinct scenarios were used to develop continuous distributions of future 
land use through interpolation. The distinct scenarios include: 

• Default: The 2045 scenario provided by local agencies 
• High Growth (and no Boom City): High growth rate in all areas.  
• Low Growth (and no Boom City): Low growth rate in all areas 
• Medium Growth (and no Boom City): Medium growth rate in all areas 
• Boom City (and either low, medium, or high growth): Very high population and 

employment growth in the boom city. The Urban and Halo growth may either be “low,” 
“medium,” or “high.” 

The default 2045 Toledo land use scenario originally provided is shown in Table 2. For this 
scenario, the total population decreases by about 5% while total employment increases by 33%, 
indicating a large imbalance in overall growth.  

Table 2. Toledo 2045 default land use. 

 Area Base 
Population 

Year 2045 
Population 

Population 
Growth 

Base 
Employment 

Year 2045 
Employment 

Employment 
Growth  

Urban Core 196,322 181,782 -14,540 102,535 137,688 35,153 
Boom City 11,781 13,126 1,345 6,653 9,252 2,599 
Halo 412,643 397,284 -15,359 235,009 312,672 77,663 
Total 620,746 592,192 -28,554 344,197 459,612 115,415 

The “low” growth scenario, shown in Table 3, uses the population growth rates by area from the 
default scenario. The employment growth rate was assumed to be half the population growth rate, 
leading to -2.5% decrease in total employment. 

Table 3. Toledo low growth land use. 

 Area Base 
Population 

Year 2045 
Population 

Population 
Growth 

Base 
Employment 

Year 2045 
Employment 

Employment 
Growth 

Urban Core 196,322 181,782 -14,540 102,535 98,738 -3,797 

Boom City 11,781 13,126 1,345 6,653 7,033 380 

Halo 412,643 397,284 -15,359 235,009 230,635 -4,374 

Regional Total 620,746 592,192 -28,554 344,197 336,406 -7,791 

The “high” growth scenario, shown in Table 4, uses the employment growth rates by area from 
the default scenario. Population by areas was assumed to grow at the same rate as employment.  
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Table 4. Toledo high growth land use. 

 Area Base 
Population 

Year 2045 
Population 

Population 
Growth 

Base 
Employment 

Year 2045 
Employment 

Employment 
Growth 

Urban Core 196,322 263,629 67,307 102,535 137,688 35,153 

Boom City 11,781 16,383 4,602 6,653 9,252 2,599 

Halo 412,643 549,008 136,365 235,009 312,672 77,663 

Regional Total 620,746 829,020 208,274 344,197 459,612 115,415 

The “medium” growth scenario was assumed to be the average of the high and low growth 
scenarios (see Table 5). 

Table 5. Toledo medium growth land use. 

Area  Base 
Population 

Future 
Population 

Population 
Growth 

Base 
Employment 

Future 
Employment 

Employment 
Growth 

Urban Core 196,322 222,705 26,383 102,535 118,213 15,678 

Boom City 11,781 14,755 2,974 6,653 8,142 1,489 

Halo 412,643 473,146 60,503 235,009 271,654 36,645 

Regional Total 620,746 710,606 89,860 344,197 398,009 53,812 

The Boom City population and employment growth was derived in a multiple-step process. 
Regional population and employment were controlled to the levels in the medium growth scenario. 
The urban core population and employment were set to the average of the low and medium 
growth scenarios. The “halo” population and employment were set to the average of the medium 
and low growth scenarios, weighting the medium growth scenario by 2/3 and the low growth by 
1/3. Then, all remaining growth was assumed to occur in the Boom City (see Table 6). The Urban 
and Halo growth were assumed to be independent and may be either low, medium, or high if 
Boom City Exists. 

Table 6. Toledo Boom City scenario. 

 Area Base 
Population 

Future 
Population 

Population 
Growth  

Base 
Employment 

Future 
Employment 

Employment 
Growth 

Boom City 11,781 60,504 48,723 6,653 31,553 24,900 

The land use data for the Chattanooga model is also developed based on a similar sort of 
approach. However, since the agency’s default scenario was more balanced, the medium growth 
scenario resembles it more.  

Table 7. Chattanooga 2045 agency land use. 

  Base 
Population 

Year 2045 
Population 

Population 
Growth  

Base 
Employment 

Year 2045 
Employment 

Employment 
Growth 

Urban Core  119,722   133,482   13,760   101,326   112,300   10,974  

Boom City  5,385   9,090   3,705   799   1,625   826  

Halo  320,692   423,731   103,039   120,053   175,221   55,168  

Regional Total  445,799   566,303   120,504   222,178   289,146   66,968  
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Table 8. Chattanooga low growth land use. 

  Base 
Population 

Year 2045 
Population 

Population 
Growth 

Base 
Employment 

Year 2045 
Employment 

Employment 
Growth 

Urban Core  119,722   128,247   8,525   101,326   106,171   4,845  

Boom City  5,385   7,945   2,560   799   1,530   731  

Halo  320,692   378,890   58,198   120,053   159,721   39,668  

Regional Total  445,799   515,082   69,283   222,178   267,422   45,244  

Table 9. Chattanooga high growth land use. 

  Base 
Population 

Year 2045 
Population 

Population 
Growth 

Base 
Employment 

Year 2045 
Employment 

Employment 
Growth 

Urban Core  119,722   136,510   16,788   101,326   116,978   15,652  

Boom City  5,385   9,758   4,373   799   2,863   2,064  

Halo  320,692   448,995   128,303   120,053   190,009   69,956  

Regional Total  445,799   595,263   149,464   222,178   309,850   87,672  

Table 10. Chattanooga medium growth land use. 

  Base 
Population 

Future 
Population 

Population 
Growth 

Base 
Employment 

Future 
Employment 

Employment 
Growth 

Urban Core  119,722   133,482   13,760   101,326   109,066   7,740  

Boom City  5,385   9,090   3,705   799   1,625   826  

Halo  320,692   423,731   103,039   120,053   169,723   49,670  

Regional Total  445,799   566,303   120,504   222,178   280,414   58,236  

Table 11. Chattanooga boom city scenario. 

 Area Base 
Population 

Future 
Population 

Population 
Growth  

Base 
Employment 

Future 
Employment 

Employment 
Growth 

Boom City 5,385 9,090 3,705 799 1,625 826 

As discussed further in chapter 44.0 the distinct land use scenarios were also used to develop 
continuous land use distributions for the response surface simulation. Urban, halo, and boom city 
growth rates were assumed to be independently distributed. The urban and halo growth were 
assumed to be normally distributed with mean equal to the growth in the “medium” scenario. The 
high growth and low growth scenarios were assumed to be about two standard deviations above 
and below the mean respectively. The percentage of the boom city growth was assumed to be 
distributed between 0 and 1 by a triangular distribution with likeliest value 0.2. 

2.3.2 Telecommuting 
Telecommuting continues to grow in the United States. The percentage of people working 
exclusively at home has increased from 4.8% in 1997 to 6.6% in 2010, according to the Census. 
This trend is likely to continue with the advance of communication and information technologies, 
eliminating some motorized commuting trips, particularly during traditional peak period hours.  
Telecommuting was assumed to grow from 2010 to 2045 at a rate generally consistent with 
historical trends. Table 12 shows annual growth rates in telecommuting based on samples of US 
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residents from three sources: the American Community Survey (ACS), Survey of Income and 
Program Participation (SIPP), and the Decennial Census. 

Table 12. Telecommuting trends by year from ACS. 

Year Total Work at 
Home % Growth 

Rate 
2000 127156 4160 3.27% 

 

2005 132383 4793 3.62% 2.13% 

2006 137295 5301 3.86% 6.64% 

2007 138282 5567 4.03% 4.27% 

2008 142544 5794 4.06% 0.97% 

2009 137312 5812 4.23% 4.13% 

2010 135906 5815 4.28% 1.09% 

Table 13. Telecommuting trends by year from SIPP. 

Year Total Work at 
Home % Growth 

Rate 
1995 125925 8340 6.62% 

 

1997 132229 9241 6.99% 2.76% 

1999 135955 9477 6.97% -0.13% 

2002 137930 10393 7.53% 2.70% 

2005 144557 11313 7.83% 1.29% 

2010 141646 13401 9.46% 4.18% 

Table 14. Telecommuting trends by year from the decennial census. 

Year Total Work at 
Home % Growth 

Rate 
1960 64656 4663 7.21% 

 

1970 76852 2685 3.49% -5.16% 

1980 96617 2178 2.25% -3.55% 

1990 115070 3406 2.96% 3.13% 

An annual telecommuting growth rate of 1.75% with a standard deviation of .03% was estimated 
from the data in Table 12. The theoretical growth rate was assumed to be normally distribution 
with this same mean and variance. The historical and theoretical growth rate distributions are 
shown in Figure 7. 
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Source: FHWA 

Figure 7. Telecommuting growth rate distribution. 

The distribution of percent telecommuting for 2045 was simulated by growing the 2010 
percentage using annual growth rates randomly drawn from the theoretical distribution shown in 
Figure 7, per the formula:  

 
Figure 8. Equation. Telecommuting share distribution generation. 

Where: 
 𝑃𝑐𝑡𝑛: Year n telecommuting percentage 

𝐺𝑛−𝑛+1: Random growth rate for year n to year n+1  
The simulated distribution included 5000 values for the 2045 telecommuting percentage. It had a 
mean of 7.8% and standard deviation of 1.4%.  
The final 2045 probability distribution was assumed to be normal (7.8%, 1.4%), with mean and 
variance based on the simulated distribution (see Figure 9). 
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Source: FHWA 

Figure 9. 2045 telecommuting distribution. 

The Toledo model does not explicitly represent telecommuting. Instead, telecommuting can be 
represented indirectly by reducing the initial number of work trips. The Chattanooga model 
includes a work-from-home option in the work location choice model. Its telecommuting share can 
therefore be shifted by adjusting the choice model constants.  

2.3.3 Parking Cost  
Studies have shown that increasing parking costs will decease parking demand. Wilson (1992) 
found that fewer vehicles were used to drive to work when drivers had to pay for parking compared 
to when parking is free. Hess (2001) found that both drive-alone and shared-ride trips decrease 
while public transit increases if free parking is changed to just $1 parking. In general, parking 
costs could influence many important household decisions, including where to live, how to travel, 
and where to travel. 
Parking cost was assumed to grow from 2010 to 2045 at a rate generally consistent with historical 
trends. However, historical parking costs were not immediately available for either study area, 
and the growth rate was instead assumed to be consistent with historical inflation. Inflation data 
from 1914 to 2015 are plotted in Figure 10. The observed distribution has an average annual 
growth of 3.3% and standard deviation of 4.8%. The theoretical growth rate was assumed to be 
normally distributed with the same mean and variance. 
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Source: FHWA 

Figure 10. Inflation rate (parking cost growth rate) distribution. 

A 2045 distribution of parking costs was simulated by growing the 2010 parking costs with annual 
inflation rates randomly drawn from the theoretical distribution in Figure 10, per the formula: 

 
Figure 11. Equation. Parking cost distribution generation. 

Where: 

 𝐶𝑜𝑠𝑡𝑛: Year n parking cost 

𝐺𝑛−𝑛+1: Inflation growth from year n to year n+1  
The simulated distribution included 5000 values for the 2045 parking cost and had a mean of X 
and standard deviation of Y. 
The final 2045 probability distribution was assumed to be normal (X, Y), with mean and variance 
based on the simulated distribution (see Figure 12). 
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Source: FHWA 

Figure 12. 2045 parking cost distribution. 

Parking costs can be adjusted in the Toledo model by changing the zonal attribute “AVG_PARK.” 
Costs can be adjusted in the Chattanooga model by changing the hourly and daily parking prices 
in the microzone file.  

2.3.4 Transit Fare 
Higher transit fares generally lead to reduced demand. While some studies have found a higher 
elasticity for transit level of service than for transit fare, fare elasticities are generally significant, 
often falling between -0.35 and -0.65.  
Transit fares are often driven by policy and may be weakly correlated with economic factors. Fares 
can remain constant for long periods and then be adjusted due to regional policy changes.  
For both cases studies, the transit fare distribution was assumed to be discretely distributed with 
an 80% chance of being equal to the base value and a 20% chance of being half the base value. 
Transit fares are represented in the Toledo model by adjusting boarding penalties. Fare are 
represented directly in the Chattanooga model by adjusting a field in the transit route system file. 

2.3.5 Fuel Cost 
Fuel cost can influence long-term household decisions on purchasing vehicles and short-term 
decisions on where and how far to travel. 
Fuel cost was assumed to grow from 2010 to 2045 at a rate generally consistent with historical 
trends. For this study, the annual rate of growth in fuel prices was estimated using 1994 to 2014 
retail gasoline prices from the U.S. Energy Information Administration (see Table 15). After 
normalizing prices to 1994 levels, the annual growth rate was calculated to have a mean value of 
2.89% and standard deviation of .15%. The theoretical growth rate distribution was assumed to 
be normal with the same mean and variance. Figure 13 compares the 1994 to 2014 growth rates 
to the theoretical distributions assumed for this study. 
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Table 15. Fuel cost annual growth rate. 

Year Retail Gasoline 
Prices1 

Inflation 
Factor 1994 Prices Annual 

growth rate 

1994 $1.08 144.5 $1.08   

1995 $1.16 148.2 $1.13 4.7% 

1996 $1.25 152.4 $1.18 4.6% 

1997 $1.24 156.9 $1.15 -3.0% 

1998 $1.07 160.5 $0.97 -15.8% 

1999 $1.18 163.0 $1.04 8.0% 

2000 $1.52 166.6 $1.32 26.7% 

2001 $1.46 172.2 $1.23 -7.3% 

2002 $1.39 177.1 $1.13 -7.7% 

2003 $1.60 179.9 $1.29 13.9% 

2004 $1.90 184.0 $1.49 15.6% 

2005 $2.31 188.9 $1.77 18.9% 

2006 $2.62 195.3 $1.94 9.4% 

2007 $2.84 201.6 $2.04 5.2% 

2008 $3.30 207.3 $2.30 12.9% 

2009 $2.41 215.3 $1.61 -29.8% 

2010 $2.84 214.5 $1.91 18.3% 

2011 $3.58 218.1 $2.37 24.1% 

2012 $3.68 224.9 $2.36 -0.2% 

2013 $3.58 229.6 $2.25 -4.8% 

2014 $3.44 233.0 $2.13 -5.3% 

2015 $2.52 236.7 $1.54 -27.9% 

                                                
1 Dollars per Gallon, U.S. All Grades 
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Source: FHWA 

Figure 13. Annual fuel cost growth rate distribution. 

A 2045 distribution of fuel costs was simulated by growing the 2010 prices with growth rates 
randomly drawn from the theoretical distribution in Figure 7, per the formula: 

 
Figure 14. Equation. Fuel cost distribution generation. 

Where: 
 𝐶𝑜𝑠𝑡𝑛: Year n fuel cost 

𝐺𝑛−𝑛+1: Cost growth from year n to year n+1  
The simulated distribution included 5000 values for the 2045 fuel price (see Figure 15). The 
simulated distributed was postulated to be lognormal. Table 16 shows descriptive statistics for a 
lognormal transformation of the simulated distribution. These statistics generally support the 
lognormal assumption since the mean and median values are similar and the skewness is small. 
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Source: FHWA 

Figure 15. Histogram plot of 2045 fuel cost (cents/mile) random draws. 

Table 16. Descriptive analysis of ln(2045 fuel cost). 

Measure Value 
Mean 2.621641709 
Standard Error 0.011489021 
Median 2.633970452 
Mode #N/A 
Standard Deviation 0.812396458 
Sample Variance 0.659988006 
Kurtosis 0.046430264 
Skewness -0.11118976 
Range 5.948147631 
Minimum -0.611372582 
Maximum 5.336775049 
Sum 13108.20854 
Count 5000 

The final 2045 probability distribution of fuel cost was assumed to be lognormal (X, Y) with mean 
and variances based on the simulated distribution (see Figure 16).  
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Source: FHWA 

Figure 16. 2045 fuel cost (cents/mile) log-normal distribution. 

2.3.6 Generational Modal Preferences 
Passenger travel in the United States is dominated by private automobile trips, however, the share 
of non-automobile trips has slowly increased in recent years. This trend may be due to recent 
investment in transit and walk/bike infrastructure or greater public awareness of the environmental 
and health benefits from less automobile use. For example, the US census indicates that the 
number of daily bike commutes has increased from 488,000 in 2000 to about 786,000 in 2008-
2012.  
Non-automobile shares were assumed to grow from 2010 to 2045 at a rate generally consistent 
with historical trends. Table 17 shows historical non-automobile commuting shares, according to 
the Bureau of Transportation Statistics. Average growth rates and standard deviations were 
estimated for the transit (0.80%, 2.68%), bike (4.72%, 5.11%), and walk (1.04%, 6.63%) shares. 
The growth rate distributions were assumed to be normal. 

Table 17. Non-automobile commuting shares. 

Year Transit Bike Walk 
2002 4.8 0.4 2.5 

2003 4.7 0.4 2.3 

2004 4.6 0.4 2.4 

2005 4.7 0.4 2.5 

2006 4.8 0.5 2.9 

2007 4.9 0.5 2.8 

2008 5.0 0.5 2.8 

2009 5.0 0.6 2.9 

2010 4.9 0.5 2.8 
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Year Transit Bike Walk 
2011 5.0 0.6 2.8 

2012 5.0 0.6 2.8 

2013 5.2 0.6 2.8 

2014 5.2 0.6 2.7 

 
The 2045 distributions of transit, walk, and bike mode shares were simulated by growing 2010 
shares using growth rates randomly drawn from their respective distributions, per the formula: 

 
Figure 17. Equation. Mode m share distribution generation. 

Where: 
 𝑆ℎ𝑎𝑟𝑒𝑚: Year n transit share for mode m 

𝑇𝑚,𝑛−𝑛+1: Growth rate from year n to year n+1 for mode m 

𝑚 ∈ {𝑡𝑟𝑎𝑛𝑠𝑖𝑡, 𝑤𝑎𝑙𝑘, 𝑏𝑖𝑘𝑒} 

The simulated 2045 transit, bike, and walk distributions each included 5000 values. A mean and 
standard deviation was computed for the simulated transit (0.84%, 0.13%), bike (5.27%, 1.53%), 
and walk (4.08%, 1.66%) distributions. The theoretical distributions were assumed to be normal. 
Figure 18 to Figure 20 compares the simulated and theoretical distributions. 

 
Source: FHWA 

Figure 18. 2045 transit share distribution. 
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Source: FHWA 

Figure 19. 2045 bike share distribution. 

 
Source: FHWA 

Figure 20. 2045 walk share distribution. 

Table 18 shows descriptive statistics for the simulated 2045 transit, bike, walk distributions as well 
as statistics for the overall non-automobile distribution. Although the walk share distribution shows 
some positive skewness, the overall non-automobile distribution has small positive skewness, 
indicating that it may be appropriate to assume a normal shape. The theoretical distribution of 
2045 non-automobile shares was assumed to be normal with a mean of 10.19% and standard 
deviation of 2.24% (Figure 21). 
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Table 18. Descriptive analysis of 2045 non-auto preference random draws. 

Statistic Transit  Bike Walk Non-Auto 
Mean 8.44E-03 5.27E-02 4.08E-02 1.02E-01 

Standard Error 1.90E-05 2.16E-04 2.35E-04 3.17E-04 

Median 8.32E-03 5.09E-02 3.79E-02 9.93E-02 

Standard 
Deviation 

1.34E-03 1.53E-02 1.66E-02 2.24E-02 

Sample Variance 1.80E-06 2.33E-04 2.76E-04 5.02E-04 

Kurtosis 7.80E-01 9.14E-01 2.98E+00 8.34E-01 

Skewness 5.88E-01 7.77E-01 1.26E+00 6.74E-01 

Range 1.08E-02 1.13E-01 1.49E-01 1.64E-01 

Minimum 5.13E-03 1.85E-02 9.20E-03 4.84E-02 

Maximum 1.59E-02 1.32E-01 1.58E-01 2.13E-01 

Sum 4.22E+01 2.63E+02 2.04E+02 5.10E+02 

Count 5.E+03 5.E+03 5.E+03 5.E+03 

 
Source: FHWA 

Figure 21. 2045 non-auto share distribution. 

As discussed in chapter 4, the theoretical 2045 non-automobile distribution shown in Figure 21 
was not used in the response surface simulation for two main reasons. First, the simulated non-
automobile distribution was based on aggregate trends for the United States, but Toledo and 
Chattanooga may not reach a double-digit non-auto share by 2045. Second, the initial response 
surface equations yielded non-intuitive results when extrapolating beyond a small change in the 
non-auto share, particularly for Toledo.  
Instead of using the distribution from Table 28, the absolute growth in non-automobile preferences 
from 2010 to 2045 was initially assumed to be normal with mean 0.50% and standard deviation 
0.1%. However, this assumption may have been too conservative, and was relaxed for 
Chattanooga in a second experiment, as described in Section 4.4. 
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3.0 Univariate Sensitivity Analyses 
Univariate “sensitivity” analyses can provide a partial quantitative description of how forecasts 
depend on individual inputs. To conduct these analyses, the analyst will adjust the value of a 
single input and record how much the forecast changes. An elasticity can be computed from the 
size of the output change relative to the size of the input change.  
At their best, univariate analyses are quick and effective, describing basic input and output 
relationships without requiring the analyst to estimate input probability distributions or conduct 
many model runs. However, univariate analyses do not indicate complex multivariate interactions 
and generally do not reveal the likelihood of different outcomes.  
Formal probability distributions have already been defined for the uncertain inputs in the case 
studies; however, these probability distributions are not needed to conduct basic univariate 
analyses. Rather, these distributions are needed for the final more advanced multivariate 
analyses discussed in the next chapter. The input probability distributions will not be used in this 
chapter other than to loosely guide the test values. 
This chapter shows how changes to individual model inputs affect the performance measures. 
Each section discusses a different input.  

3.1 Telecommuting  

The US Census indicates that telecommuting has increased from 4.8% in 1997 to 6.6% in 2010. 
This upward trend is likely to continue with advances in communication and information 
technologies. For the sensitivity tests, the percentage of 2045 telecommuting is increased to 
about 10%. 

3.1.1 Toledo Results 
A 10% telecommuting share was indirectly represented in the Toledo model through a 10% 
reduction in work trips. Table 19 shows the change in work and total trips. The overall number of 
trips decreased by about 2%, which is a moderate but meaningful change. 

Table 19. Change of trip generation in telecommuting scenario for trip-based model. 

 Purpose Base Scenario 10% Telecommuting 
Scenario Difference 

Home based work trips 323,106 290,795 -10% 
Non-home based work trips 142,437 128,194 -10% 
All Other Trips 1,965,077 1,965,077 0% 
Grand Total 2,430,620 2,384,066 -2% 

 
Table 20 shows the sensitivity of Toledo performance measures to a 10% telecommuting share. 
Transit ridership was the most sensitive measure, decreasing by 6.3%. This result is not 
unexpected since a relatively large number of transit trips are home-based work (HBW) and more 
telecommuting directly reduces commuting. VMT and delay decreased by a moderate amount 
comparable to the percent decrease in overall trips (see Table 19). Delay decreased slightly more 
than VMT likely because commutes often occur during the most congested periods of the day. 
The reduction in walk and bike trips was more moderate likely because these are not common 
HBW modes in Toledo. 
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Table 20. Toledo model sensitivity to telecommuting. 

Performance 
Measure 

Percent Change 
in Test Scenario Elasticity 

VMT -2.18% -.20 

Delay -2.41% -.22 

Transit Ridership -6.3% -.58 

Walk/Bike Trips -1.3% -.12 

3.1.2 Chattanooga Results 
The regional Chattanooga telecommuting share was increased to a little over 10% by adjusting 
the work-at-home constant in the work location choice model. Table 21 shows the percentage 
and absolute number of telecommuting workers in the base and telecommuting scenarios. The 
overall percentage of employed persons working from home increased from 3.6% to 10.6% while 
the absolute number increased from 7,105 to 20,803. Some areas saw a relatively large increase 
in telecommuting; for example, the percentage of Downtown Chattanooga residents working from 
home increased from 14.9% to 32.6%. 

Table 21. Change of commuting trips in telecommuting scenario for activity-based model. 

Areas 
Base Scenario 

(Percentage of work 
at home) 

Base Scenario 
(Number of workers 

working at home) 

10 % 
Telecommuting 

Scenario 
(Percentage of work 

at home) 

10 % 
Telecommuting 

Scenario 
(Number of workers 

working at home) 

Downtown 
Chattanooga 14.9% 894 32.6% 1,957 

Near East 
Side 12.0% 1,012 27.6% 2,331 

East Ridge 1.6% 263 5.1% 850 

Red Bank 3.8% 786 12.6% 2,629 

Lookout 
mountain 4.3% 911 13.7% 2,872 

Soddy-Daisy 3.4% 767 10.6% 2,410 

Middle Valley 1.4% 256 4.5% 837 

Ridgeside 1.8% 257 6.3% 879 

Harrison 1.4% 264 4.3% 811 

Collegedale 3.4% 778 11.0% 2,483 

Catoosa 3.5% 917 10.6% 2,744 

Total 3.6% 7,105 10.6% 20,803 

Table 23 shows the total tours by purpose for the base and telecommuting scenarios. As 
expected, the number of work and work-related tours decreased in response to the increase of 
telecommuting. At the same time, the number of non-work related tours increased, which may be 
due to the new telecommuters starting more tours from home rather than work and using some 
of the travel time saved from telecommuting to make other trips.  
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Table 22. Change of tour generation in telecommuting scenario for activity-based model. 

 Purpose Base 10% Telecommuting Difference 

work 154,010 140,467 -9% 

school 74,838 75,363 1% 

escort 70,170 73,676 5% 

pers.bus 85,862 88,489 3% 

shop 53,021 54,469 3% 

meal 30,162 30,890 2% 

soc/rec 53,122 54,184 2% 

workbased 21,654 18,888 -13% 

Total 542,839 536,426 -1% 

Table 23 shows the sensitivity of Chattanooga performance measures to a 10% telecommuting 
share. VMT, delay, and transit ridership all decreased from increased telecommuting as would 
generally be expected. Even though the overall number of tours only decreased by 1% (Table 
22), the nearly 10% decrease in work tours could explain the somewhat larger changes in VMT, 
delay and transit since work trips tend to be longer, in more congested periods, and more likely 
to use transit. The decreasing in VMT is similar to that predicted by the Toledo model, while the 
Chattanooga model predicts a somewhat larger decrease in delay. This may be a result of greater 
based levels of peak period congestion due to chokepoints in the Chattanooga network due to 
the mountains and rivers. The decrease in transit ridership is greater than the decrease in trips or 
VMT but less than the decrease predicted by the Toledo model. This may be due to a difference 
in the work/non-work split of transit riders in the two cities. Walk and bike trips are the most 
sensitive to the 10% telecommuting shares in Chattanooga, which is notably different from the 
Toledo result, where the number of walk and bike trips decreased slightly (Table 20). This may 
be a result of the fact that the model predicted people living in downtown Chattanooga to be more 
likely to telecommute. These people may invest the time saved from telecommuting in short non-
work walking trips such as walking to lunch. 

Table 23. Chattanooga model sensitivity to telecommuting. 

Performance 
Measure 

Percent Change 
in Test Scenario Elasticity 

VMT -1.73% -0.18 

Delay -4.56% -0.47 

Transit Ridership -3.07% -0.39 

Walk/Bike Trips 6.9% 0.72 

3.2 Parking Costs 
The case studies test an average regional parking cost of $15 per day. Relative to the 2045 base 
scenarios, the $15 cost represents a major price increase for both Toledo and Chattanooga.  

3.2.1 Toledo Model 
Average parking costs were increased from $3.64 to $15 by scaling values for the zonal attribute 
“AVG_PARK.” 
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The total regional trips did not change since the trip generation model is not sensitive to parking 
costs. Transit shares increased for almost every purpose, with home-based work (HBW) shares 
increasing the most (see Table 24). The induced transit commuting is intuitive since transit service 
to downtown areas and employment centers is generally more competitive and could capture 
some choice riders. 

Table 24. Transit share by purpose in parking cost increase scenario. 

Purpose 
Base 
Scenario 

Parking Cost 
Increase Scenario Difference 

Home based work trips 2.20% 2.69% 0.49% 

Home base shopping 0.43% 0.50% 0.07% 

Home based school trips 0.33% 0.35% 0.01% 

Home based high school trips 0.37% 0.48% 0.11% 

Home based college trips 0.37% 0.37% 0.00% 

Home based other trips 0.45% 0.70% 0.24% 

Non-home based work trips 0.05% 0.18% 0.13% 

Non-home based other trips 0.12% 0.36% 0.24% 

TOTAL 0.64% 0.87% 0.24% 

Table 25 shows the sensitivity of the Toledo performance measures to $15 parking. Transit 
ridership is clearly the most sensitive of the performance measures. The number of riders 
increased by 37.1% and the .14 elasticity suggests that doubling parking costs could induce 
nearly 15% more riders. The other performance measures, particularly VMT and delay, are largely 
insensitive to parking prices. Thus, despite a relatively large increase in transit ridership, 
aggregate VMT and delay statistics only decrease slightly because automobile use is very 
prevalent in Toledo. Parking cost had little effect on non-motorized trips, but might induce a small 
number of trips to switch from automobile to walking or biking.  

Table 25. Toledo model sensitivity to parking costs. 

Performance Measure Percent Change 
in Test Scenario 

Elasticity 

VMT -.05% -.00019 

Delay -.07% -.00028 

Transit Ridership 37.1% .14 

Walk/Bike Trips .19% .00072 

3.2.2 Chattanooga Results 
For the Chattanooga parking cost sensitivity test, the average daily parking price was increased 
from $0.50 to $15 by scaling prices in the microzone file. (The base parking cost should have 
been coded as $5 and this later corrected, but the sensitivity analysis presents the results with 
the original scenario as stated.) 
The parking cost increase resulted in a very small decrease in total generated tours (Table 26). 
The share of drive-alone decreased from 41.3% to 40.2%, while the shares of high-occupant 
vehicle and transit tours increased (see Table 27). The direction of these changes is intuitive. 
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Table 26. Change of total tours by purpose. 

Purpose Base 
Scenario 

Parking Cost 
Increase Scenario Difference 

work 154,010 153,230 -0.51% 
school 74,838 74,609 -0.31% 
escort 70,170 70,245 0.11% 
pers.bus 85,862 85,841 -0.02% 
shop 53,021 52,940 -0.15% 
meal 30,162 30,254 0.31% 
soc/rec 53,122 52,775 -0.65% 
workbased 21,654 21,575 -0.36% 
Total 542,839 541,469 -0.25% 

Table 27. Change of tour mode. 

Mode 
Base Scenario 

Share 

Parking Cost 
Increase Scenario 

Share 

Base Scenario  

Trips 

Parking Cost 
Increase Scenario 

Trips 

Drive Alone 41.3% 40.2% 224,051 217,768 

Shared Ride 2 28.2% 28.3% 152,905 153,084 

Shared Ride 
3+ 23.7% 24.1% 128,854 

130,535 

Drive-Transit 0.1% 0.1% 317 308 

Walk-Transit 0.5% 0.7% 2,931 3,744 

Bike 0.1% 0.2% 678 882 

Walk 1.9% 2.3% 10,548 12,379 

School Bus 4.1% 4.2% 22,525 22,739 

Total 100.0% 100.0% 542,809 541,439 

Table 28 shows the sensitivity of the Chattanooga performance measures to $15 parking. VMT 
decreases by 0.57% in the test scenario while delay decreases by 2.09%. Delay may decrease 
by more than VMT since the higher parking cost discourages trips to the more congested 
downtown area. Total transit boardings increased by 83.36%, which greatly exceeds the percent 
increase in transit tours. Since the CBD area was most affected by the increase in parking cost, 
the disproportionate increase in total boardings may be due to riders making multi-transfer trips 
to the downtown area rather than pay the parking costs. Walk and bike trips also increased, 
although not as much as transit. In general, these changes predicted by the Chattanooga model 
were similar in direction but greater in magnitude than those predicted by the Toledo model.  
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Table 28. Chattanooga model sensitivity to parking costs. 

Performance Measure Percent Change in 
Test Scenario 

Elasticity 

VMT -0.57% -.00002 

Delay -2.09% -0.00008 

Transit Ridership 83.36% 0.0032 

Walk/Bike Trips 17.61% 0.00067 

3.3 Fuel Prices 
Fuel price increases can lead to less VMT and delay and cause substitution of transit for private 
automobile. The case studies tested an increase in 2045 fuel prices to $0.27 per mile (or roughly 
$8/gallon assuming around a 30 mile per gallon fleet fuel efficiency). 

3.3.1 Toledo Results 
For the Toledo sensitivity test, auto operating cost was increased from $0.10 to $0.27 by adjusting 
a mode choice parameter. Thus, trip generation and other model steps occurring before mode 
choice were not directly affected. 
In response to the fuel price increase, walk-to-transit mode shares increased slightly for each trip 
purpose, however, drive-to-transit shares decreased for each purpose (Table 29). The overall 
increase in walk-to-transit trips slightly outweighed the overall decrease in drive-to-transit trips, 
but the opposite was true for the home-based work purpose.  

Table 29. Change of walk to transit and drive to transit in fuel price increase scenario. 

  Base Scenario 
Fuel price increase 

Scenario Absolute Difference 

PURPOSE 
Walk to 
Transit 

Drive to 
Transit 

Walk to 
Transit 

Drive to 
Transit 

Walk to 
Transit 

Drive to 
Transit 

Home based work 
trips 

1.570% 0.629% 1.848% 0.315% 0.278% -0.314% 

Home base 
shopping 

0.393% 0.034% 0.483% 0.018% 0.091% -0.016% 

Home based school 
trips 

0.307% 0.024% 0.352% 0.013% 0.044% -0.011% 

Home based high 
school trips 

0.340% 0.030% 0.393% 0.017% 0.053% -0.013% 

Home based college 
trips 

0.340% 0.033% 0.421% 0.015% 0.081% -0.018% 

Home based other 
trips 

0.419% 0.035% 0.501% 0.019% 0.081% -0.017% 

Non-home based 
work trips 

0.051% 0.000% 0.058% 0.000% 0.008% 0.000% 

Non-home based 
other trips 

0.120% 0.000% 0.135% 0.000% 0.015% 0.000% 

TOTAL 0.512% 0.125% 0.607% 0.063% 0.094% -0.062% 
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Table 30 shows the sensitivity of the Toledo performance measures to the fuel price increase. 
Transit ridership increased by about 4.9%. Although it was the most sensitive of the performance 
measures, the .029 transit elasticity indicates that a doubling of fuel prices might only increase 
demand by about 3%. VMT and delay decreased by a very small amount in response the fuel 
price increase. Their elasticities suggest that a doubling of prices might reduce VMT and delay 
only by .13% and .15% respectively. These modest responses are likely due to representing auto 
operating cost only in the mode choice model step. In theory, higher fuel prices would also 
suppress demand, cause shorter trips, and may even affect land use patterns. 

Table 30. Toledo model sensitivity to fuel prices. 

Performance Measure Percent Change 
in Test Scenario 

Elasticity 

VMT -.215% -.00013 

Delay -.248% -.00015 

Transit Ridership 4.897% .029 

Walk/Bike Trips .073% .000043 

3.3.2 Chattanooga Results 
For the Chattanooga sensitivity test, auto operating cost was increased to $0.27 by changing a 
parameter in configuration file.2 

Table 31 shows the change in tours by purpose from the fuel price increase. The overall number 
of tours decreases by a very small amount while each purpose increases or decreases by a 
modest amount. The increases in some purposes may be an artifact of simulation variation or in 
some cases (i.e., escort, meal, work-based) legitimate increases in trip-chaining behavior.  

Table 31. Change in tours by purpose in fuel price increase scenario. 

Purpose 
Base 
Scenario 

Fuel Price 
Increase Scenario % Diff 

Work 154,010 152,872 -0.74% 

School 74,838 74,163 -0.90% 

Escort 70,170 70,418 0.35% 

Per. Bus 85,862 85,917 0.06% 

Shop 53,021 52,736 -0.54% 

Meal 30,162 30,433 0.90% 

Soc/rec 53,122 52,854 -0.50% 

Workbased 21,654 22,028 1.73% 

Total 542,839 541,421 -0.26% 

 
Table 32 shows the mode share changes. The mode shares generally increase or decrease in 
the expected direction. The model forecasts a shift from drive alone to shared ride and a general 

                                                
2 “Coefficients_BaseCostCoefficientPerMonetaryUnit,” which has units of dollars per mile, was changed 



How-to: Quantify Uncertainty in Travel Forecasts 
 

April 2018 34  

shift to active transportation. While transit also increases, the 0.05% absolute increase in the 
transit share is notably less than the shared ride and active transportation increases.  

Table 32. Change of tour mode share in fuel price increase scenario. 

Mode 
Base Fuel Price Increase 

Absolute 
Change 

Relative 
Change 

Drive Alone 41.28% 39.75% -1.52% -4% 

Shared Ride 2 28.17% 28.29% 0.12% 0% 

Shared Ride 3+ 23.74% 24.77% 1.03% 4% 

Drive-Transit 0.06% 0.06% 0.00% 8% 

Walk-Transit 0.54% 0.59% 0.05% 9% 

Bike 0.12% 0.15% 0.02% 18% 

Walk 1.94% 2.20% 0.25% 13% 

School Bus 4.15% 4.19% 0.04% 1% 

Total 100.00% 100.00% 0.00% 0% 

Table 34 shows the sensitivity of Chattanooga performance measures to the increase in fuel price. 
Transit riders increased by about 10% while walk/bike trips increased by about 13%. Despite a 
double-digit percent increase in transit ridership, the model sensitivity is still moderate as the .059 
transit elasticity indicates that a doubling of fuel costs may result in only 6% more riders. VMT 
and delay decreased by a moderate amount in response to the price increase. Fewer total tours; 
shorter tours, and a shift to transit and active transportation may all contribute to the decrease in 
VMT and delay. While these changes are generally modest, they are substantially larger than 
those predicted by the Toledo model. 

Table 33. Chattanooga model sensitivity to fuel prices. 

Performance Measure Percent Change 
in Test Scenario 

Elasticity 

VMT -2.60% -.01528 

Delay -6.35% -.03733 

Transit Ridership 10% .059 

Walk/Bike Trips 13% .076 

3.4 Transit Fares 
Transit demand will generally decrease from a fare increase, although some “captive” riders may 
continue using transit particularly in the short-term. The case studies tested both a 50% reduction 
and a 100% increase in transit fare. 

3.4.1  Toledo Results 
For the Toledo sensitivity test, the 50% fare reduction and the 100% fare increase were 
implemented by halving and doubling the boarding time penalty. 
Table 34 shows the change in transit share by purpose from the fare adjustments. Since home-
based work (HBW) is the only purpose to include a boarding time penalty in its transit accessibility 
measure, the HBW share transit share is the only one to change in the sensitivity tests.  
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Table 34. Percent change in Toledo transit shares from fare adjustments. 

PURPOSE 
Base 
Scenario 

50% Price 
Scenario Change 

200% Price 
Scenario Change 

Home based work trips 2.20% 2.49% 0.29% 1.72% -0.48% 

Home base shopping 0.43% 0.43% 0.00% 0.43% 0.00% 

Home based school trips 0.33% 0.33% 0.00% 0.33% 0.00% 

Home based high school 
trips 0.37% 0.37% 0.00% 0.37% 0.00% 

Home based college trips 0.37% 0.37% 0.00% 0.37% 0.00% 

Home based other trips 0.45% 0.45% 0.00% 0.45% 0.00% 

Non-home based work 
trips 0.05% 0.05% 0.00% 0.05% 0.00% 

Non-home based other 
trips 0.12% 0.12% 0.00% 0.12% 0.00% 

TOTAL 0.64% 0.69% 0.05% 0.56% -0.08% 

Table 35 shows the sensitivity of the Toledo performance measures to the transit fare changes. 
As expected, transit ridership was the most sensitive of the measures. The estimated elasticity 
was between -.13 and -.15, suggesting that a 100% increase in transit fare might result in a 13% 
to 15% decrease in ridership. While elasticities between -.35 and -.65 are typically found in the 
literature, the overall Toledo elasticity was expected to be low since only work trips were 
(indirectly) sensitive to fare changes. 
The VMT and delay changes were expected to be very small since the base transit share is much 
less than the automobile share and only a major change in transit ridership would materially affect 
these statistics. However, the VMT and delay totals do change in the expected direction. 

Table 35. Toledo model sensitivity to transit fares. 

Performance 
Measure 

Percent Change in 
50% Fare Scenario 

Elasticity in 50% 
Fare Scenario 

Percent Change in 
200% Fare Scenario 

Elasticity in 200% 
Fare Scenario 

VMT -.01% -.0002 .07% .0007 

Delay -.02% .0004 .08% .0008 

Transit Ridership 7.7% -.15 -12.6% -.13 

Walk/Bike Trips -.02% -.0004 .12% .0012 

3.4.2  Chattanooga Results 
For the Chattanooga sensitivity test, the fare reduction and increase were implemented by editing 
the fare field in the transit route system file. 
Table 36 shows the percent change in mode share from the transit fare adjustments. The walk-
to-transit share increased by about 33% from the 50% reduction and decreased by about 35% 
from the 100% fare increase. The drive-to-transit response was a little weaker; the share 
increased by about 13% from the fare reduction and decreased by about 30% from the fare 
increase. Walk and bike trips increased by over 2% from the fare increase, likely because some 
transit riders may not own an automobile or may live in urbanized areas that are conducive to 
short trips.  
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Table 36. Percent change in Chattanooga transit share from fare adjustments. 

Mode Base 
Scenario 

50% Fare 
Scenario 

200% Fare 
Scenario 

Percent 
Change in 50% 
Fare Scenario 

Percent Change 
in 200% Fare 

Scenario 
Drive Alone 41.3% 41.2% 41.3% -0.14% 0.09% 
Shared Ride 2 28.2% 28.1% 28.2% -0.19% 0.23% 
Shared Ride 3+ 23.7% 23.7% 23.8% -0.34% 0.20% 
Drive-Transit 0.1% 0.1% 0.0% 13.17% -29.72% 
Walk-Transit 0.5% 0.7% 0.4% 33.44% -34.55% 
Bike 0.1% 0.1% 0.1% 0.81% 2.56% 
Walk 1.9% 2.0% 2.0% 1.14% 2.14% 
School Bus 4.1% 4.1% 4.2% -0.49% 0.28% 
Total 100.0% 100.0% 100.0% 0.00% 0.00% 

Table 37. Absolute increase in Chattanooga transit trips from fare adjustments. 

Mode Base Half Double 
Half absolute 

change 
Double absolute 

change 
Drive Alone 224,051 223,890 224,450 -161 399 
Shared Ride 2 152,905 152,728 153,387 -177 482 
Shared Ride 
3+ 128,854 128,512 129,228 -342 374 
Drive-Transit 317 359 223 42 -94 
Walk-Transit 2,931 3,914 1,920 983 -1,011 
Bike 678 684 696 6 18 
Walk 10,548 10,676 10,783 128 235 
School Bus 22,525 22,431 22,609 -94 84 
Total 542,809 543,194 543,296 385 487 

Table 38 shows the sensitivity of the Chattanooga performance measures to the transit fare 
changes. As expected, transit ridership is the most sensitive measure. The Chattanooga fare 
elasticities are generally in line with those found in the literature. However, the fact that the 
elasticity estimated from the price reduction scenario, -.67, and the elasticity estimated from the 
price increase scenario, -.35, are notably different illustrates how elasticities are most appropriate 
for forecasting moderate changes to an input and must be used carefully when forecasting major 
changes to an input. For example, using the -.67 elasticity to forecast a 100% price increase 
would give a much different answer from using -.35 to forecast a 100% price increase. 

Table 38. Chattanooga model sensitivity to transit fares. 

Performance 
Measure 

Percent Change in 
50% Fare Scenario 

Elasticity in 50% 
Fare Scenario 

Percent Change in 
200% Fare Scenario 

Elasticity in 200% 
Fare Scenario 

VMT -.18% .0037 .04% .0004 

Delay -.48% .0097 .25% .0025 

Transit Ridership 33.69% -.67 -34.90% -.35 

Walk/Bike Trips -.95% -.0190 1.89% .019 
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4.0 Response Surface Simulation 
Response surface simulation can be viewed as the multivariate generalization of univariate 
“sensitivity testing.” Even when input probability distributions are not defined, the analyst can 
apply the techniques discussed in sections 4.1 and 4.2 to quantify multivariate input-output 
relationships and apply the reduced form response surface model to specific scenarios to quickly 
generate a much wider range of scenario outcomes than could be produced by the travel model 
itself. When the input probability distributions are also defined, the analyst can apply a technique 
such as Monte Carlo simulation to estimate the full distribution of outcomes, as demonstrated in 
sections 4.3 and 4.4.  
Section 4.1 describes the experimental design of the response surface simulation used in the 
case studies. Section 4.2 shows the reduced form models, or regression equations estimated to 
quantify multivariate input-output relationships. The simulated input distributions are presented in 
Section 4.3, and the results are discussed in Section 4.4. 

4.1 Experimental Design 
There are many factors in a regional travel demand model that affect travel forecasts. The 
objective of the experimental design for this quantitative uncertainty modeling is to support the 
development of a simplified model of the effects of factors whose future values are uncertain and 
that have a significant effect on travel demand. For this application, ten such factors were 
identified. 

1. Auto Operating Cost 
2. Telecommuting 
3. Transit Service Cost 
4. Parking Cost 
5. Non-auto preference Mode Share 
6. Urban Core Pop Growth 
7. Urban Core Employment 
8. Remainder/Halo Area Population Growth 
9. Remainder/Halo Area Employment Growth 
10. Boom City Growth and Employment  

Plausible ranges of values for each of these factors were determined and associated with discrete 
levels of the factors. For six of the factors which were assumed to be of generally lower impact 
on travel demand and for which the effects on travel demand were assumed to be linear, only two 
discrete levels were specified. For the other four factors, four discrete levels were used which 
means that up to three coefficients could be estimated for each, allowing, for example, estimation 
of quadratic or cubic polynomials to represent effects on travel demand (see Table 39). 

Table 39. Levels for each factor. 

Factor Level Definition 
Auto Operating Cost 1 Base 
Auto Operating Cost 2 $0.27/mile 
Telecommuting 1 Base 
Telecommuting 2 10% increase 
Transit Service Cost 1 0.5 * Base 
Transit Service Cost 2 2 * Base 
Parking Cost 1 Base 
Parking Cost 2 $15/day 
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Factor Level Definition 
Non-Automobile Preference 1 Base 
Non-Automobile Preference 2 Base + 0.5% 
Urban Core Pop Growth 1 Low (-2 SD) 
Urban Core Pop Growth 2 Medium-Low (-2/3 SD) 
Urban Core Pop Growth 3 Medium-High (+2/3 SD) 
Urban Core Pop Growth 4 High (+2 SD) 
Urban Core Emp Growth 1 Low (-2 SD) 
Urban Core Emp Growth 2 Medium-Low (-2/3 SD) 
Urban Core Emp Growth 3 Medium-High (+2/3 SD) 
Urban Core Emp Growth 4 High (+2 SD) 
Halo Pop Growth 1 Low (-2 SD) 
Halo Pop Growth 2 Medium-Low (-2/3 SD) 
Halo Pop Growth 3 Medium-High (+2/3 SD) 
Halo Pop Growth 4 High (+2 SD) 
Halo Emp Pop Growth 1 Low (-2 SD) 
Halo Emp Pop Growth 2 Medium-Low (-2/3 SD) 
Halo Emp Pop Growth 3 Medium-High (+2/3 SD) 
Halo Emp Pop Growth 4 High (+2 SD) 
Boom City Growth 1 Growth consistent with Halo 
Boom City Growth 2 Boom city scenario for 

population and employment 
 
With six two-level and four four-level factors, there are 26x44 = 16,384 different possible 
combinations of levels. In theory, one could run the travel demand model with each of these 
combinations and use the resulting data to statistically determine how each level of each factor 
affected travel demand. However, doing all those runs would require a very significant 
computational effort which would likely make the effort infeasible. The alternative is to choose a 
subset of the 16,384 possible combinations in a way that allows the individual effects of each 
factor to be estimated reasonably accurately and does so parsimoniously. The minimum number 
of combinations necessary to be run to estimate coefficients for each level beyond a “base” level 
of each factor can be determined by summing the number of levels minus one for each factor. 
So, in this case, we would need at least six combinations to estimate the effects of the six two-
level factors plus 12 (4x3) for the four-level factors, resulting in 18 total. Note that this is the 
minimum number required assuming the resulting model includes 18 coefficients. 
But just choosing to run any 18 combinations would not necessarily allow us to develop good 
statistical estimates of the effects of these factors on travel demand. For example, choosing them 
in a way that not all levels of all factors are represented would preclude estimation of coefficients 
for those levels. In addition, always showing certain levels of one factor with specific levels of 
another factor would confound the ability to separately estimate the effects of those two factors. 
There are many ways to construct good experimental designs that consist of a small subset of 
the total number of possible combinations. The subset is called a fractional factorial design and a 
design in which the levels of all factors are uncorrelated with the levels of each other factor is 
called an orthogonal fractional factorial design. These types of designs in general result in the 
best (lowest variance) estimates of effects of factors in linear models but can also be used to 
estimate nonlinear effects (though other designs would generally be more efficient in those 
cases). 
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There is a large literature on experimental design, including several good texts3 and some easily 
accessible tools to develop different types of designs. A US DOT guide4, available in various 
places online, includes a set of tables of orthogonal fractional factorial designs developed by early 
researchers in the field. These tables span a very wide range of designs for different numbers of 
factors with different numbers of levels. In addition, there are open-source r packages that can be 
used to generate both simple and more complex designs of various types.5 
A 20-experiment orthogonal fractional factorial design was developed for this application, using 
the open-source r package AlgDesign. The resulting design table is shown below. The levels, 
numbered 1-4, correspond with the definitions shown in Table 39.  

Table 40. Experiment orthogonal fractional factorial design. 

Experiment 
Auto 
Cost 

Tele-
Commute 

Transit 
Cost 

Parking 
Cost 

Non- 
auto 

Urban 
Pop 

Urban 
Emp 

Halo 
Pop 

Halo 
Emp 

Boom 
City 

1 2 1 1 1 1 3 4 2 4 1 
2 1 1 2 2 1 2 2 2 4 2 
3 2 1 1 1 2 2 4 1 2 2 
4 1 2 2 2 1 2 4 1 1 1 
5 2 1 2 1 2 2 3 4 1 1 
6 2 2 2 2 1 3 3 2 2 1 
7 2 1 2 2 2 1 2 3 4 1 
8 2 2 1 2 2 4 2 2 1 2 
9 1 2 1 2 2 2 3 4 4 1 
10 1 2 2 1 2 3 4 3 2 2 
11 2 2 2 1 1 4 2 3 3 1 
12 2 1 1 2 1 4 3 3 3 2 
13 1 1 2 2 2 3 3 1 3 2 
14 2 2 2 1 2 1 1 2 3 2 
15 2 2 1 2 1 1 1 3 2 2 
16 1 1 1 2 2 3 2 4 1 1 
17 1 2 1 1 2 4 1 1 4 1 
18 1 2 1 1 1 1 4 4 3 2 
19 1 1 2 1 1 4 1 4 2 2 
20 1 1 1 1 1 1 1 1 1 1 

 
Because this is an orthogonal design, the bivariate correlations among all factors are all zero, as 
shown in Table 41.  

                                                
3 See, for example, Montgomery, Douglas (2013). Design and analysis of experiments (8th ed.). 
Hoboken, NJ: John Wiley & Sons, Inc. 
4 Kocur, G., T. Adler, et al. (1982) Guide to Forecasting Travel Demand with Direct Utility Assessment, 
U.S. DOT, Urban Mass Transit Administration, Report UMTA-NH-11-0001-82-1, September 1982. 
5 For a current listing of available r resources for experimental design, see https://cran.r-
project.org/web/views/ExperimentalDesign.html 
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Table 41. Bivariate correlations. 

 
Auto 
Cost 

Tele-
Commute 

Transit 
Cost 

Parking 
Cost 

Non- 
auto 

Urban 
Pop 

Urban 
Emp 

Halo 
Pop 

Halo 
Emp 

Boom 
City 

Auto Cost 1 0 0 0 0 0 0 0 0 0 
Telecommute 0 1 0 0 0 0 0 0 0 0 
Transit Cost 0 0 1 0 0 0 0 0 0 0 
Parking Cost 0 0 0 1 0 0 0 0 0 0 

Non-Auto 0 0 0 0 1 0 0 0 0 0 
Urban Pop 0 0 0 0 0 1 0 0 0 0 
Urban Emp 0 0 0 0 0 0 1 0 0 0 
Halo Pop 0 0 0 0 0 0 0 1 0 0 
Halo Emp 0 0 0 0 0 0 0 0 1 0 
Boom City 0 0 0 0 0 0 0 0 0 1 

 
The travel demand model was run for each of the 20 experiments in this design and the resulting 
data were used to develop simple regression-based models that represent the effects of the 
design’s ten factors on travel forecasts. The regression estimation results are presented in next 
section. 

4.2 Reduced Form Model Estimation 
Regression equations were estimated for each of five performance measures discussed in 
chapter 2:  

• Vehicles miles traveled (VMT) 
• Delay6  
• Transit ridership  
• Car emissions 
• Truck emissions 

The five regression equations have similar specifications and include at least one explanatory 
variable for each of the ten factors discussed in section 4.1. Some specifications have an 
additional term for the square of halo population, but otherwise the specifications are the same. 
Similar specifications were used to help compare the case study results, but much different 
specifications could be estimated for each performance measure in practice. The models could 
omit factors that are believed (or found) to be unrelated to the forecast variable. For example, 
transit fares may have an immaterial effect on truck emissions outside of certain metropolitan 
areas. The set of explanatory variables are shown below. 

Table 42. Explanatory variables in regression equations for reduced form model estimation. 

Explanatory Variable Note 
Constant  

Auto Cost (¢)  

                                                
6 Measured as congested vehicle hours traveled minus free flow time vehicle hours 
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Explanatory Variable Note 
Telecommuting Share (% * 100)  

Transit Cost (ratio) Scenario cost over base cost 

Parking Cost ($)  

Non-auto Share (% * 100)  

Urban Core Pop Growth (%) Growth from 2010 to 2045 

Urban Core Emp Growth (%) Growth from 2010 to 2045 

Halo Pop Growth (%) Growth from 2010 to 2045 

Halo Emp Growth (%) Growth from 2010 to 2045 

Boom City (dummy) Dummy variable 

Halo Pop Growth Squared (%2) Growth from 2010 to 2045 

 
The estimated reduced form models are shown in Table 43 to Table 50. Coefficients and standard 
errors are reported for all the explanatory variables, even when the variables are not statistically 
significant. In practice, some of the statistically insignificant variables could be dropped. 
While many of the estimated coefficients are intuitive, most of the models have one or more 
coefficients with unexpected signs or magnitudes. These results have been retained and 
presented here because they are practical challenge that others may well also encounter, and it 
helpful to illustrate their identification and discuss their treatment. These coefficients can 
sometimes be ignored because they are statistically insignificant and not believed to be related 
to the performance measure, and/or the model simply be re-estimated, dropping them from the 
specification. In other cases, the counter-intuitive coefficients have large t-statistics or are 
otherwise believed to be inappropriately related to the performance measure. In practice, the 
analyst could again consider a different functional form for these counter-intuitive terms, such as 
by squaring them or using a log transformation. The analyst could also alternatively improve the 
experimental design by adding variable levels that capture a wider range of the theoretical input 
distribution. For example, more auto cost levels could be used in this experiment, although adding 
levels increases the number of required runs. In practice, two other explanations for counter-
intuitive results should always be considered. First, the user may have set up the model 
incorrectly. Second, the model may have a fundamental limitation or problem. While sometimes 
frustrating, identifying model limitations can be very useful for prioritizing future enhancements. 
The Toledo and Chattanooga reduced form models for VMT are presented in Table 43 and Table 
44, respectively. Diffuse population and employment growth were expected to contribute 
disproportionately to VMT; the models generally show positive correlation between VMT and 
growth in the halo areas.  
Some of the other Toledo coefficients are not intuitive. For example, auto cost is positively 
correlated with VMT and has a high t-statistic. The Toledo result seems counter-intuitive since 
higher fuel prices would generally lead to fewer and shorter auto trips. However, as discussed in 
section 3.3, fuel prices only impact work trips in the Toledo model and only in the mode choice 
step and thus have a modest impact. Parking cost is positively but weakly correlated with VMT. 
This counter intuitive result may likewise be due to not considering parking cost until the mode 
choice step. For Chattanooga, auto cost shows a clear and strong negative relationship with VMT; 
parking cost also shows a negative relationship, but a much weaker, more tentative one.  
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Table 43. Regression results for VMT in Toledo (trip-based) model. 

Coefficients Beta Std. Error T-Stat Significance 
Constant 15,757,601.0 184,225.3 85.53 3.89E-13 
Auto Cost 13,092.2 5,343.5 2.45 3.99E-02 
Telecommute -42,453.3 6,765.1 -6.28 2.39E-04 
Transit Cost 35,241.2 45,100.9 0.78 4.57E-01 
Parking Cost 2,793.4 6,132.7 0.46 6.61E-01 
Non-Auto Preference -308,132.0 105,704.9 -2.92 1.94E-02 
Urban Population Growth 21,009.9 2,074.9 10.13 7.73E-06 
Urban Employment Growth -1,695.0 2,271.5 -0.75 4.77E-01 
Halo Zones Population Growth 29,493.7 13,068.7 2.26 5.40E-02 
Halo Zones Employment Growth 8,587.5 2,035.7 4.22 2.92E-03 
Boom City 929,590.8 69,483.9 13.38 9.32E-07 
Halo Population Growth Square 878.7 350.3 85.53 3.89E-13 

Adjusted R Square 0.982 

 

Table 44. Regression results for VMT in Chattanooga (activity-based) model. 

Coefficients Beta Std. Error T-Stat Significance 
Constant 13,860,181.3 554,104.2 25.014 .000 
Auto Cost -26,994.5 6,312.8 -4.276 .002 
Telecommute -5,861.3 15,507.4 -.378 .714 
Transit Cost 38,232.2 71,316.1 .536 .605 
Parking Cost -612.0 7,188.1 -.085 .934 
Non-Auto Preference -363,941.9 118,890.0 -3.061 .014 
Urban Population Growth 21,103.0 16,712.6 1.263 .238 
Urban Employment Growth -20,064.1 14,440.7 -1.389 .198 
Halo Zones Population Growth 26,934.5 6,028.0 4.468 .002 
Halo Zones Employment Growth 28,613.6 10,257.8 2.789 .021 
Boom City 418,178.7 109,600.2 3.815 .004 
Adjusted R Square 0.890 

 
The Toledo and Chattanooga reduced form models for delay are presented in Table 45 and Table 
46 respectively. Concentrated population and employment growth were expected to clearly 
contribute to delay since dense growth causes congestion. The results show that more growth, 
including the existence of the “Boom City”, generally increases delay. As expected, higher transit 
costs and lower non-auto shares also contribute to delay.  
The Chattanooga model indicates that auto cost is negatively correlated with delay whereas the 
Toledo model indicates that auto cost is positively correlated with delay. As already discussed, 
this may be due to not considering auto cost until the mode choice step and only for work trips. 
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Table 45. Regression results for delay in Toledo (trip based) model. 

Coefficients Beta Std. Error T-Stat Significance 
Constant 44,572.1 6,723.8 6.63 0.00 
Auto Cost (¢) 308.1 195.0 1.58 0.15 
Telecommuting Share (% * 100) -830.5 246.9 -3.36 0.01 
Transit Cost (ratio) 1,260.6 1,646.1 0.77 0.47 
Parking Cost ($) -96.1 223.8 -0.43 0.68 
Non-auto Share (% * 100) -14,420.9 3,858.0 -3.74 0.01 
Urban Core Pop Growth (%) 390.1 75.7 5.15 0.00 
Urban Core Emp Growth (%) -87.2 82.9 -1.05 0.32 
Halo Pop Growth (%) -345.2 477.0 -0.72 0.49 
Halo Emp Growth (%) 215.7 74.3 2.90 0.02 
Boom City (dummy) 21,101.3 2,536.0 8.32 0.00 
Halo Pop Growth Squared (%2) 35.8 12.8 6.63 0.00 
Adjusted R Square 0.927 

 

Table 46. Regression results for delay in Chattanooga (activity based) model. 

Coefficients Beta Std. Error T-Stat Significance 
Constant 25,862.0 17,845.9 1.45 0.19 
Auto Cost (¢) -96.4 61.3 -1.57 0.15 
Telecommuting Share (% * 100) 32.4 135.1 0.24 0.82 
Transit Cost (ratio) 163.2 589.0 0.28 0.79 
Parking Cost ($) -62.1 91.3 -0.68 0.52 
Non-auto Mode Share (% * 100) -1,412.2 899.6 -1.57 0.16 
Urban Core Pop Growth (%) 86.3 121.7 0.71 0.50 
Urban Core Emp Growth (%) 100.3 279.1 0.36 0.73 
Halo Pop Growth (%) -9.7 43.1 -0.22 0.83 
Halo Emp Growth (%) -345.3 1,518.5 -0.23 0.83 
Boom City (dummy) 1,692.1 822.6 2.06 0.07 
Halo Pop Growth Squared (%2) 7.7 23.6 0.33 0.75 
Adjusted R Square 0.869 

 
The Toledo and Chattanooga reduced form models for transit ridership are presented in Table 47 
and Table 48 respectively. Lower transit cost and higher non-auto preference were expected to 
increase transit use. Non-auto preference shows the expected positive relationship in both 
models; however, transit cost is only weakly correlated with ridership in the Toledo model and has 
virtually no correlation in the Chattanooga model. In practice, adding more transit cost levels to 
the experimental design may help the results. Higher parking and auto costs are also positively 
associated with transit use in both models as would be expected, but the auto cost correlation is 
weak in the Toledo model.  
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Dense population and employment growth is generally conducive to transit. While neither model 
showed a strong or consistent relationship between growth and transit ridership, the urban 
population growth coefficient was positive and significant for Toledo. 

Table 47. Regression results for transit ridership in Toledo (trip based) model. 

Coefficients Beta Std. Error T-Stat Significance 
Constant 8,906.1 6,278.3 1.42 1.94E-01 
Auto Cost 80.7 182.1 0.44 6.69E-01 
Telecommute 44.3 230.6 0.19 8.53E-01 
Transit Cost -1,875.9 1,537.0 -1.22 2.57E-01 
Parking Cost 565.7 209.0 2.71 2.68E-02 
Non Auto Preference 22,576.0 3,602.4 6.27 2.41E-04 
Urban Population Growth 187.5 70.7 2.65 2.92E-02 
Urban Employment Growth -4.5 77.4 -0.06 9.55E-01 
Halo Zones Population Growth 137.0 445.4 0.31 7.66E-01 
Halo Zones Population Growth -9.6 69.4 -0.14 8.94E-01 
Boom City  -2,097.6 2,368.0 -0.89 4.02E-01 
Halo Population Growth Square 0.2 11.9 0.02 9.85E-01 
Adjusted R Square  

0.743 
 

Table 48. Regression results for transit ridership in Chattanooga (activity based) model. 

Coefficients Beta Std. Error T-Stat Significance 
Constant -615.5 8,233.6 -0.07 0.94 
Auto Cost 143.2 68.6 2.09 0.07 
Telecommute 0.3 124.9 0.00 1.00 
Transit Cost -6.1 568.5 -0.01 0.99 
Parking Cost 179.8 55.7 3.23 0.01 
Non Auto Preference 4,062.9 957.5 4.24 0.00 
Urban Population Growth 71.4 128.9 0.55 0.60 
Urban Employment Growth -67.3 109.8 -0.61 0.56 
Halo Zones Population Growth -170.9 684.3 -0.25 0.81 
Halo Zones Population Growth -41.8 88.5 -0.47 0.65 
Boom City  -1,425.6 908.2 -1.57 0.16 

Halo Population Growth Square 3.1 11.5 0.27 0.79 

Adjusted R Square -- -- -- 0.644 

 
The Toledo and Chattanooga reduced form models for auto emissions are presented in Table 49 
and Table 50 respectively. These results are analogous to the VMT and delay results, which was 
expected since more travel and frequent acceleration contribute to auto emissions. For Toledo, 
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all types of population and employment growth are positively correlated with auto emissions. For 
Chattanooga, diffuse halo area growth is also positively correlated with auto emissions. 

Table 49. Regression results for auto emissions in Toledo (trip based) model. 

Coefficients Beta Std. Error T-Stat Significance 
Constant 618,160.0 4,016.6 153.90 3.55E-15 
Auto Cost 146.3 116.5 1.26 2.45E-01 
Telecommute -1,913.5 147.5 -12.97 1.18E-06 
Transit Cost 713.2 983.3 0.73 4.89E-01 
Parking Cost 33.5 133.7 0.25 8.09E-01 
Non-Auto Preference -8,114.4 2,304.6 -3.52 7.84E-03 
Urban Population Growth 1,154.8 45.2 25.53 5.95E-09 
Urban Employment Growth 149.9 49.5 3.03 1.64E-02 
Halo Zones Population Growth 2,173.2 284.9 7.63 6.15E-05 
Halo Zones Population Growth 148.0 44.4 3.33 1.03E-02 
Boom City  39,032.1 1,514.9 25.77 5.52E-09 
Halo Population Growth Square 21.7 7.6 2.85 2.16E-02 
Adjusted R Square -- -- -- 0.996 

 

Table 50. Regression results for auto emissions in Chattanooga (activity based) model. 

Coefficients Beta Std. Error T-Stat Significance 
Constant 440,141.5 19,792.5 22.238 .000 
Auto Cost -972.2 225.5 -4.312 .002 
Telecommute -319.2 553.9 -.576 .579 
Transit Cost 1,607.7 2,547.4 .631 .544 
Parking Cost -33.7 256.8 -.131 .898 
Non-Auto Preference -12,508.9 4,246.7 -2.946 .016 
Urban Population Growth 787.8 597.0 1.320 .220 
Urban Employment Growth -600.5 515.8 -1.164 .274 
Halo Zones Population Growth 924.9 215.3 4.295 .002 
Halo Zones Employment Growth 934.9 366.4 2.552 .031 
Boom City  14,639.0 3,914.9 3.739 .005 
Adjusted R Square -- -- -- 0.893 

 

4.3 Monte Carlo Simulation  
About 100,000 combinations of model input values were randomly drawn from the probability 
distributions discussed in Section 2.3. These sets of input values were entered into the reduced 
form models to simulate 2045 distributions for each performance measure. This section discusses 
the Monte Carlo simulation used to draw the input value combinations and presents a frequency 
distribution for each input. The next section discusses the simulated 2045 forecast distributions.  
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The Excel plug-in Crystal Ball was used to perform Monte Carlo simulation, which included about 
100,000 random draws for each input variable. Figure 22 to Figure 35 show frequency 
distributions for each input value. The light blue bars show the frequency of each input value, and 
the dark blue background shape shows the theoretical distribution. The simulated and theoretical 
distributions aligned very well in most cases, suggesting that 100,000 draws were sufficient.  
Population and employment growth percentages were simulated separately for Toledo and 
Chattanooga, but the models used the same frequency distributions for the other inputs.  
As noted in section 2.3, the original 2045 non-auto preference distribution (Figure 21) had to be 
adjusted. The original distribution included a wide range of non-auto shares that extended well 
beyond the levels used in the experimental design; extrapolating to these high non-auto shares 
elicited overly sensitive model responses. Further, the original non-auto preference distribution 
was based on national data and may have included too much variation for auto-centric cities like 
Toledo and Chattanooga. A non-auto preference distribution with a lower mean and variance was 
ultimately asserted for the case studies; Figure 25 shows the asserted distributed of absolute 
growth in transit share relative to the base. 
The presence of Boom City was treated as a dummy variable in the reduced form equations, with 
a value of 1 indicating that Boom City exists and a value of 0 indicating that Boom City does not 
exist. Although input frequency distribution for Boom City (Figure 35) is likewise bound between 
0 and 1, the simulated distribution is continuous between 0 and 1, with “0” indicating that 0% of 
the Boom City growth occurs and “1” indicating that 100% of the growth occurs.  
The simulations also included draws from the standard error of the regression distribution for each 
model. These error distributions are shown in Figure 36 through Figure 43. Generally speaking, 
drawing from the error distribution serves to increase the overall forecast variation, or uncertainty, 
by accounting for the known error in the estimated model. 

 
Source: FHWA 

Figure 22. 2045 auto cost distribution (Toledo and Chattanooga). 
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Source: FHWA 

Figure 23. 2045 telecommuting share distribution (Toledo and Chattanooga). 

 
Source: FHWA 

Figure 24. 2045 parking cost distribution (Toledo and Chattanooga). 
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Source: FHWA 

Figure 25. 2045 non-auto mode share distribution (Toledo and Chattanooga). 

 
Source: FHWA 

Figure 26. 2045 transit fare distribution (Toledo and Chattanooga). 



How-to: Quantify Uncertainty in Travel Forecasts 
 

April 2018 49  

 
Source: FHWA 

Figure 27. Toledo model 2045 urban core population growth rate distribution (2045 vs 2010). 

 
Source: FHWA 

Figure 28. Chattanooga model 2045 urban core population growth rate distribution (2045 vs 2010). 



How-to: Quantify Uncertainty in Travel Forecasts 
 

April 2018 50  

 
Source: FHWA 

Figure 29. Toledo model 2045 urban core employment growth rate distribution (2045 vs 2010). 

 
Source: FHWA 

Figure 30. Chattanooga model 2045 urban core employment growth rate distribution (2045 vs 2010). 
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Source: FHWA 

Figure 31. Toledo model 2045 halo population growth rate distribution (2045 vs 2010). 

 
Source: FHWA 

Figure 32. Chattanooga model 2045 rest of area population growth rate distribution (2045 vs 2010). 
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Source: FHWA 

Figure 33. Toledo model 2045 halo employment growth rate distribution (2045 vs 2010). 

 
Source: FHWA 

Figure 34. Chattanooga model 2045 halo employment growth rate distribution (2045 vs 2010). 
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Source: FHWA 

Figure 35. 2045 percentage of Boom City (Toledo and Chattanooga). 
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Source: FHWA 

Figure 36. Toledo model squared error of prediction for VMT. 

 
Source: FHWA 

Figure 37. Chattanooga model squared error of prediction for VMT. 
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Source: FHWA 

Figure 38. Toledo model squared error of prediction for delay. 

 
Source: FHWA 

Figure 39. Chattanooga model squared error of prediction for delay. 
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Source: FHWA 

Figure 40. Toledo model squared error of prediction for transit ridership. 

 
Source: FHWA 

Figure 41. Chattanooga model squared error of prediction for transit ridership. 
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Source: FHWA 

Figure 42. Toledo model squared error of prediction for auto emissions. 

 
Source: FHWA 

Figure 43. Chattanooga model squared error of prediction for auto emissions. 
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4.4 Results 
This section reviews the forecast results. A cumulative probability distribution and a multivariate 
sensitivity analysis, or variation decomposition, are presented for each forecast value 
The cumulative probability distribution indicates the likelihood of the performance measure 
exceeding each value in its domain. For example, when the curve has a y-value of .5, there is a 
50% chance the performance measure will exceed the associated x-value. The distribution can 
also be used to impute the probability of the x-value falling within a certain range. 
The sensitivity diagrams, or variation decompositions, indicate the percentage of the forecast 
variation that can be attributed to each input or to the forecast error. The absolute value of each 
bar indicates its approximate contribution to the forecast variation, with negative (positive) bars 
implying the input is negatively (positively) associated with the forecast variable. Thus, each 
forecast variable is most sensitive to the longest bar. The forecast variable may be sensitive to a 
given input either because the input is inherently uncertain or because changes elicit strong model 
responses. An input is likely to be a dominant source of forecast variation when it is relatively 
uncertain and changes in its value elicit a sharp response. The diagrams also indicate the 
contribution of the error term to the forecast variation. The error term generally has a lower 
contribution when the model fit is better.  
The Toledo and Chattanooga VMT cumulative probability distributions are shown in Figure 44 
and Figure 45 respectively. The Toledo distribution suggests there is an 85% chance that 2045 
VMT will between about 16,000,000 and 18,000,000, while the Chattanooga distribution suggests 
there is an 85% chance that 2045 VMT will between about 14,000,000 and 15,700,000. The 
Toledo forecast distribution is slightly more uncertain than the Chattanooga forecast distribution 
both in relative and in absolute terms.  
There are several possible explanations for the greater Toledo forecast variation: the Toledo 
inputs, such as the 2045 population and employment growth, may be inherently more uncertain 
than the Chattanooga inputs; the Toledo model is more sensitive to its uncertain inputs; or due to 
inconsistency in the specification of either reduced form model. Lending credence to the third 
explanation is the fact that a large percentage of the variation in 2045 Toledo VMT is driven by 
the uncertainty in halo population (Figure 46) and the Toledo model, but not the Chattanooga 
model, includes a halo population squared term.  
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Source: FHWA 

Figure 44. Cumulative probability distribution of 2045 VMT for Toledo. 

 
Source: FHWA 

Figure 45. Cumulative probability distribution of 2045 VMT for Chattanooga. 
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Figure 46 and Figure 47 show the relative contribution of each model input to the variation, or 
uncertainty, in the 2045 VMT forecasts for Toledo and Chattanooga. For Toledo, much of the 
forecast variation is due exclusively to the halo population input, whereas for Chattanooga, fuel 
prices and halo population are each responsible for significant variation. Fuel cost uncertainty 
may be much less important for Toledo because this variable is only used in the mode choice 
step for work trips.  

 
Source: FHWA 

Figure 46. VMT sensitivity for Toledo. 
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Source: FHWA 

Figure 47. VMT sensitivity for Chattanooga. 

The Toledo and Chattanooga delay cumulative probability distributions are shown in Figure 48 
and  Figure 49 respectively. The Toledo distribution indicates there is an 85% chance the 2045 
delay will between about 40,000 and 80,000, while the Chattanooga distribution indicates there 
is about an 85% the 2045 delay will between about 10,000 and 32,000. This result suggests the 
2045 Toledo distribution is more uncertain in absolute terms, while the Chattanooga distribution 
is more uncertain in relative terms.  
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Source: FHWA 

Figure 48. Cumulative probability distribution of 2045 delay for Toledo. 

 
Source: FHWA 

Figure 49. Cumulative probability distribution of 2045 delay for Chattanooga. 
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Figure 50 and Figure 51 show the relative contribution of each model input to the variation, or 
uncertainty, in the 2045 delay forecasts for Toledo and Chattanooga. For Toledo, much of the 
forecast variation is due to the population inputs and the existence (or absence) of Boom City. 
The 2045 Toledo delay is also sensitive to fuel costs and non-automobile preferences. For 
Chattanooga, the biggest source of delay variation, other than forecasting error, is the halo 
population growth rate. Adjusting the experimental design to include more factor levels or 
experiments may reduce the contribution of the error term for Chattanooga. 

 
Source: FHWA 

Figure 50. Delay sensitivity for Toledo. 
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Source: FHWA 

Figure 51. Delay sensitivity for Chattanooga. 

The Toledo and Chattanooga transit ridership cumulative probability distributions are shown in 
Figure 52 and Figure 53 respectively. The Toledo distribution indicates there is an 80% chance 
the 2045 ridership will be between about 20,000 and 40,000 compared to actual base year 
ridership of 11,418. This distribution may be relatively wide since the Toledo transit share is small 
and even a one-tenth percentage point increase in the model share would yield an appreciable 
change in ridership. The Toledo model may have been overly sensitive to the assumptions of 
generational modal preferences and/or these assumed preferences may have interacted more 
strongly than anticipated with other scenario assumptions, which may or may not be realistic. The 
initial simulation indicated that there is an 80% chance the 2045 ridership will be between about 
0 and 8,000, which is roughly the current ridership. It also indicated a 13% of negative ridership, 
which is clearly impossible.  In practice, when facing this type of counter-intuitive result, an analyst 
may respond in a number of ways including modifying the experimental design to include more 
factor levels and experiments or by adjusting the reduced form model, such as by including a log 
transformation on key factors. However, for this example, the issue was addressed by running a 
second simulation with a different distributional assumption regarding generational modal 
preferences (refer to Section 2.3.6 for discussion of this assumption), assuming that they would 
be more in keeping with the national trend. The resulting second simulation shows an 80% 
probability that the transit ridership in Chattanooga is between 7,000 and 17,000, which seems 
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far more plausible. This example both illustrates the importance of these distributional 
assumptions, but also the ease of changing them once a reduced form model is in place. 

 
Source: FHWA 

Figure 52. Cumulative probability distribution of 2045 transit ridership for Toledo. 

 
Source: FHWA 

Figure 53. Cumulative probability distribution of 2045 transit ridership for Chattanooga (original). 
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Source: FHWA 

Figure 54. Cumulative probability distribution of 2045 transit ridership for Chattanooga (revised). 

Figure 55 and Figure 56 show the relative contribution of each model input to the variation, or 
uncertainty, in the 2045 transit ridership forecasts for Toledo and Chattanooga. As expected, 
much of the variation in Toledo ridership is due to non-auto preference. Parking cost also 
contributes significantly to the Toledo forecast variation. For Chattanooga, auto cost contributes 
the most to transit ridership uncertainty. A potential explanation is that the right tail of the 2045 
fuel cost distribution includes high prices that elicit strong substitution of transit for auto (see 
Figure 22).  
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Source: FHWA 

Figure 55. Transit ridership sensitivity for Toledo. 
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Source: FHWA 

Figure 56. Transit ridership sensitivity for Chattanooga. 

The Toledo and Chattanooga car emissions cumulative probability distributions are shown in 
Figure 57 and Figure 58 respectively. The Toledo distribution indicates there is an 80% chance 
of having between about 640,000 and 720,000 tons of car pollutants, while the Chattanooga 
distribution indicates there is 80% chance of having between about 440,000 and 500,000 tons 
of car pollutants. The relative amount of uncertainty is comparable between the two models. 
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Source: FHWA 

Figure 57. Cumulative probability distribution of 2045 car emissions for Toledo. 

 
Source: FHWA 

Figure 58. Cumulative probability distribution of 2045 car emissions for Chattanooga. 

Figure 59 and Figure 60 show the relative contribution of each model input to the variation, or 
uncertainty, in the 2045 car emissions forecasts for Toledo and Chattanooga. Population growth 
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rates and the existence (or absence) of Boom City causes much of the variation in the Toledo 
forecasts. Fuel price is the most significant source of variation in the Chattanooga model, which 
may be due to testing high 2045 fuel prices. 

 
Source: FHWA 

Figure 59. Car emissions sensitivity for Toledo. 
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Source: FHWA 

Figure 60. Car emissions sensitivity for Chattanooga. 
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5.0 Discussion 
This how-to guide demonstrates techniques for quantifying forecast uncertainty through two case 
studies. The case studies illustrated methods for defining input uncertainty distributions and 
estimating input-output relationships; these methods can be carefully integrated to yield forecast 
probability distributions. A 2045 trip-based model for Toledo, Ohio, was applied in the first case 
study, and a 2045 activity-based model for Chattanooga, Tennessee, was applied in the second 
case study.  
This chapter summarizes the main lessons from the studies. It discusses the merit of the forecast 
methods and provides general observations on input-output relationships in travel models. 
Section 5.1 reviews the performance measures from the case studies, and section 5.2 compares 
the univariate and response surface methods. 

5.1 Discussion of Example Results 

Despite some of the limitations and simplifications of the examples presented here, they still help 
suggest some potentially interesting and useful insights into forecasting uncertainty in key 
performance measures.  
The analyses suggest that there may be relatively little uncertainty in regional VMT, with an 80% 
chance of being within +/- 6% of a mean forecast. Auto emissions forecasts may be similarly 
reasonably precise. It is worth noting, that while total VMT may be relatively precise, if instead 
normalized by considering the VMT growth versus the base condition, the VMT growth would 
exhibit much higher uncertainty. Regions with higher growth therefore, could expect higher 
uncertainty in their total VMT as well. 
In contrast, the analysis suggests there is much greater uncertainty in delay and transit ridership. 
The relatively greater uncertainty in delay relative to VMT may be in part due to the fact that these 
travel models – like the vast majority of travel models – were validated primarily against observed 
traffic volumes, not speeds. The relative uncertainty in transit ridership may in part be simply due 
to the small nature of the phenomenon in areas like Toledo and Chattanooga, but may also be in 
part due to uncertainty in modal preferences in younger generations and possibly also uncertainty 
in fuel costs.  
The uncertainty in VMT and delay and auto emissions all are more associated with uncertainty in 
the amount of dispersed growth in suburban and rural areas. Chattanooga’s activity-based model 
also indicates the importance of the uncertainty in fuel prices, while the same is not true of 
Toledo’s trip-based model. It is important to consider that Toledo’s model may understate the 
uncertainty in this regard, while the Chattanooga model overstate it (due to the limitations of the 
experimental design discussed).  
It is also important to keep in mind the general limitations of the study in not considering factors 
such as uncertainty in freight growth and the impacts of automated vehicles. Even so, the results 
of the analysis can be useful for planning.  

5.2 Conclusions 
Univariates “sensitivity” analyses can be quick and effective, describing basic input and output 
relationships without requiring the analyst to estimate input probability distributions or conduct 
many model runs. Univariate testing should be considered for most model development and 
application work.  
These tests generally do not require significant preparation and the basic input-output relationship 
can be estimated through simple or aggregate analyses. Calendar time is often one of the main 
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obstacles to conducting sensitivity analyses since these tests are sometimes started late in the 
project cycle. Although trip-based models generally have a major run time advantage over activity-
based models and support more sensitivity analysis, this was only marginally true for the 
Chattanooga model, which could be completed in two to three hours. 
Beyond describing basic input-output relationships, sensitivity testing is an effective way to 
expose model errors and limitations. If an output is assumed to be closely related to an input but 
changing the input’s value elicits an unexpected response, then this may be a symptom of a user 
error. For example, changing the Chattanooga parking cost initially elicited a small response, but 
then it was discovered that cost had been mistakenly coded in terms of cents instead of dollars. 
An unexpected response may also be a symptom of a model design limitation. While this type of 
finding can be frustrating, it is useful for identifying and prioritizing future model enhancements. 
A key disadvantage of univariate sensitivity tests is that they cannot determine how the results 
would vary with simultaneous changes to multiple inputs. Response surface methods can quantify 
these types of multivariate relationships. As shown in Chapter 4, a multivariate reduced form 
equation can be estimated without conducting many more runs than were conducted for the 
sensitivity tests in Chapter 3. The experimental design for the reduced form model even included 
many of the same runs for the sensitivity tests; in general, this means that univariate and response 
surface methods should not be viewed as an either/or decision since the univariate work can often 
recycled for the multivariate work, if the modeling team feels more advanced analyses are 
needed. Aside from conducting more model runs, the main challenge to producing a reduced form 
model may be efficiently designing the experiment, which was discussed in section 4.1. 
While reduced form models can be productively used to examine multivariate input-output 
relationships, their full potential is unlocked when the analyst can also define probability 
distributions for the uncertain inputs. Once these distributions are defined, the analyst can quantify 
the likelihood that the performance measures, or forecast variables, assume each value in their 
respective ranges. Unfortunately, quantifying input probability distributions is generally neither 
quick nor easy. The analyst must first identify the set of key uncertain inputs for the study and will 
need to evaluate whether it is time or cost prohibitive to include certain inputs. In some cases, the 
uncertain input distribution could be derived from historical data. In other cases, expert judgment 
may be needed to define the distribution.  
It should be mentioned that defining input probability distributions can be a useful exercise even 
if the distributions are not ultimately used in a response surface method. The historical evidence 
suggests optimism biases are not uncommon in forecasting and having to carefully trace through 
the derivation of future year assumptions may lead modelers to consider a wider range of 
outcomes or simply different default assumptions for forecasting. 
With both defined input probability distributions and reduced form equations for the forecast 
variables, the analyst can simulate the forecast probability distribution. This distribution may be 
very valuable to policy makers as, for example, it could be used to define the likelihood of 
collecting a certain amount of toll or fare box revenue. But even if the forecast probability 
distributions are not immediately useful to policy makers, they may still be very useful to modelers 
and planners. The analyst may see that distribution of certain performance measure is 
unexpectedly wide or narrow or that the variation in the performance measures depends heavily 
on an unexpected input. This type of result may expose a model limitation or error, or it may 
compel the analyst or planner to reconsider prior beliefs.  
 



 

 

NOTICE 

This document is disseminated under the sponsorship of the U.S. Department of Transportation 
in the interest of information exchange. The United State Government assumes no liability for its 
contents or use thereof. 

The United States Government does not endorse manufacturers or products. Trade names 
appear in the document only because they are essential to the content of the report. 

The opinions expressed in this report belong to the authors and do not constitute an 
endorsement or recommendation by FHWA. 

This report is being distributed through the Travel Model Improvement Program (TMIP). 

 



 

 

 

U.S. Department of Transportation 
Federal Highway Administration 
Office of Planning, Environment, and Realty 
1200 New Jersey Avenue, SE 
Washington, DC 20590 

April 2018 

FHWA-HEP-20-021 

 

 


	1.0  Introduction
	1.1 Reasons for Quantifying Uncertainty
	1.1.1 Qualitative Treatment of Uncertainty

	1.2 Methods for Quantifying Uncertainty
	1.2.1 Historical / Retrospective
	1.2.2 Analytic


	2.0  Case Studies
	2.1 Locations
	2.1.1 Toledo
	2.1.2 Chattanooga

	2.2 Performance Measures of Interest
	2.3 Sources of Uncertainty
	2.3.1 Land Use
	2.3.2 Telecommuting
	2.3.3 Parking Cost
	2.3.4 Transit Fare
	2.3.5 Fuel Cost
	2.3.6 Generational Modal Preferences


	3.0  Univariate Sensitivity Analyses
	3.1 Telecommuting
	3.1.1 Toledo Results
	3.1.2 Chattanooga Results

	3.2 Parking Costs
	3.2.1 Toledo Model
	3.2.2 Chattanooga Results

	3.3 Fuel Prices
	3.3.1 Toledo Results
	3.3.2 Chattanooga Results

	3.4 Transit Fares
	3.4.1  Toledo Results
	3.4.2  Chattanooga Results


	4.0  Response Surface Simulation
	4.1 Experimental Design
	4.2 Reduced Form Model Estimation
	4.3 Monte Carlo Simulation
	4.4 Results

	5.0  Discussion
	5.1 Discussion of Example Results
	5.2 Conclusions


